Detail výsledku

Residual Memory Networks: Feed-forward approach to learn long-term temporal dependencies

BASKAR, M.; KARAFIÁT, M.; BURGET, L.; VESELÝ, K.; GRÉZL, F.; ČERNOCKÝ, J. Residual Memory Networks: Feed-forward approach to learn long-term temporal dependencies. In Proceedings of ICASSP 2017. New Orleans: IEEE Signal Processing Society, 2017. p. 4810-4814. ISBN: 978-1-5090-4117-6.
Typ
článek ve sborníku konference
Jazyk
anglicky
Autoři
Baskar Murali Karthick, Ing., Ph.D., UPGM (FIT)
Karafiát Martin, Ing., Ph.D., UPGM (FIT)
Burget Lukáš, doc. Ing., Ph.D., UPGM (FIT)
Veselý Karel, Ing., Ph.D., UPGM (FIT)
Grézl František, Ing., Ph.D., UPGM (FIT)
Černocký Jan, prof. Dr. Ing., UPGM (FIT)
Abstrakt

Training deep recurrent neural network (RNN) architectures iscomplicated due to the increased network complexity. This disruptsthe learning of higher order abstracts using deep RNN. Incase of feed-forward networks training deep structures is simpleand faster while learning long-term temporal information isnot possible. In this paper we propose a residual memory neuralnetwork (RMN) architecture to model short-time dependenciesusing deep feed-forward layers having residual and time delayedconnections. The residual connection paves way to constructdeeper networks by enabling unhindered flow of gradientsand the time delay units capture temporal information withshared weights. The number of layers in RMN signifies both thehierarchical processing depth and temporal depth. The computationalcomplexity in training RMN is significantly less whencompared to deep recurrent networks. RMN is further extendedas bi-directional RMN (BRMN) to capture both past and futureinformation. Experimental analysis is done on AMI corpus tosubstantiate the capability of RMN in learning long-term informationand hierarchical information. Recognition performanceof RMN trained with 300 hours of Switchboard corpus is comparedwith various state-of-the-art LVCSR systems. The resultsindicate that RMN and BRMN gains 6 % and 3.8 % relativeimprovement over LSTM and BLSTM networks.

Klíčová slova

Automatic speech recognition, LSTM, RNN,Residual memory networks.

URL
Rok
2017
Strany
4810–4814
Sborník
Proceedings of ICASSP 2017
Konference
2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP)
ISBN
978-1-5090-4117-6
Vydavatel
IEEE Signal Processing Society
Místo
New Orleans
DOI
UT WoS
000414286204194
EID Scopus
BibTeX
@inproceedings{BUT144448,
  author="Murali Karthick {Baskar} and Martin {Karafiát} and Lukáš {Burget} and Karel {Veselý} and František {Grézl} and Jan {Černocký}",
  title="Residual Memory Networks: Feed-forward approach to learn long-term temporal dependencies",
  booktitle="Proceedings of ICASSP 2017",
  year="2017",
  pages="4810--4814",
  publisher="IEEE Signal Processing Society",
  address="New Orleans",
  doi="10.1109/ICASSP.2017.7953070",
  isbn="978-1-5090-4117-6",
  url="https://www.fit.vut.cz/research/publication/11467/"
}
Soubory
Projekty
Analytika velkých řečových dat pro kontaktní centra, EU, Horizon 2020, zahájení: 2015-01-01, ukončení: 2017-12-31, ukončen
IT4Innovations excellence in science, MŠMT, Národní program udržitelnosti II, LQ1602, zahájení: 2016-01-01, ukončení: 2020-12-31, ukončen
Výzkumné skupiny
Pracoviště
Nahoru