Detail výsledku

Walk-set induced connectedness in digital spaces

ŠLAPAL, J. Walk-set induced connectedness in digital spaces. Carpathian Journal of Mathematics, 2017, vol. 33, no. 2, p. 247-256. ISSN: 1584-2851.
Typ
článek v časopise
Jazyk
anglicky
Autoři
Abstrakt

In an undirected simple graph, we define connectedness induced by a set of walks of the same lengths. We show that the connectedness is preserved by the strong product of graphs with walk sets. This result is used to introduce a graph on the vertex set Z^2 with sets of walks that is obtained as the strong product of a pair of copies of a graph on the vertex set Z with certain walk sets. It is proved that each of the walk sets in the graph introduced induces connectedness on Z^2 that satisfies a digital analogue of the Jordan curve theorem. It follows that the graph with any of the walk sets provides a convenient structure on the digital plane Z^2 for the study of digital images.

Klíčová slova

Simple graph, strong product, walk, connectedness, digital space, Jordan curve theorem

URL
Rok
2017
Strany
247–256
Časopis
Carpathian Journal of Mathematics, roč. 33, č. 2, ISSN 1584-2851
UT WoS
000411780600011
EID Scopus
BibTeX
@article{BUT144498,
  author="Josef {Šlapal}",
  title="Walk-set induced connectedness in digital spaces",
  journal="Carpathian Journal of Mathematics",
  year="2017",
  volume="33",
  number="2",
  pages="247--256",
  issn="1584-2851",
  url="http://carpathian.ubm.ro"
}
Soubory
Projekty
IT4Innovations excellence in science, MŠMT, Národní program udržitelnosti II, LQ1602, zahájení: 2016-01-01, ukončení: 2020-12-31, ukončen
Výzkumné skupiny
Pracoviště
Nahoru