Detail výsledku
Terse walk sets in graphs and induced closure operators
ŠLAPAL, J. Terse walk sets in graphs and induced closure operators. TOPOLOGY AND ITS APPLICATIONS, 2017, vol. 230, no. 1, p. 258-266. ISSN: 0166-8641.
Typ
článek v časopise
Jazyk
anglicky
Autoři
Šlapal Josef, prof. RNDr., CSc., ÚM (FSI)
Abstrakt
Given a graph G, for every ordinal a > 1, we introduce and study closure operators on G induced by sets of a-indexed walks. For such sets, we define a property called terseness and investigate how it affects the induced closure operators. We show, among others, that the induction, if regarded as a map, is one-to-one for terse walk sets. We also determine a poset of closure operators (on a given graph) that is a direct limit of a direct system of sets of terse a-indexed walks ordered by set inclusion for certain ordinals a > 1. Possible applications of the closure operators studied in digital topology are indicated.
Klíčová slova
Simple graph, alpha-walk, terse walk set, closure operator, direct limit
Rok
2017
Strany
258–266
Časopis
TOPOLOGY AND ITS APPLICATIONS, roč. 230, č. 1, ISSN 0166-8641
DOI
UT WoS
000413130900024
EID Scopus
BibTeX
@article{BUT144499,
author="Josef {Šlapal}",
title="Terse walk sets in graphs and induced closure operators",
journal="TOPOLOGY AND ITS APPLICATIONS",
year="2017",
volume="230",
number="1",
pages="258--266",
doi="10.1016/j.topol.2017.08.046",
issn="0166-8641",
url="https://www.fit.vut.cz/research/publication/11591/"
}
Soubory
Projekty
IT4Innovations excellence in science, MŠMT, Národní program udržitelnosti II, LQ1602, zahájení: 2016-01-01, ukončení: 2020-12-31, ukončen
Výzkumné skupiny
Pracoviště