Detail výsledku

Bayesian Models for Unit Discovery on a Very Low Resource Language

ONDEL YANG, L.; GODARD, P.; BESACIER, L.; LARSEN, E.; HASEGAWA-JOHNSON, M.; SCHARENBORG, O.; DUPOUX, E.; BURGET, L.; YVON, F.; KHUDANPUR, S. Bayesian Models for Unit Discovery on a Very Low Resource Language. In Proceedings of ICASSP 2018. Calgary: IEEE Signal Processing Society, 2018. p. 5939-5943. ISBN: 978-1-5386-4658-8.
Typ
článek ve sborníku konference
Jazyk
anglicky
Autoři
ONDEL YANG, L.
GODARD, P.
BESACIER, L.
LARSEN, E.
Hasegawa-Johnson Mark, FIT (FIT)
SCHARENBORG, O.
Dupoux Emmanuel, FIT (FIT)
Burget Lukáš, doc. Ing., Ph.D., UPGM (FIT)
YVON, F.
Khudanpur Sanjeev
Abstrakt

Developing speech technologies for low-resource languageshas become a very active research field over the last decade.Among others, Bayesian models have shown some promisingresults on artificial examples but still lack of in situ experiments.Our work applies state-of-the-art Bayesian modelsto unsupervised Acoustic Unit Discovery (AUD) in a reallow-resource language scenario. We also show that Bayesianmodels can naturally integrate information from other resourcefullanguages by means of informative prior leadingto more consistent discovered units. Finally, discoveredacoustic units are used, either as the 1-best sequence or as alattice, to perform word segmentation. Word segmentationresults show that this Bayesian approach clearly outperformsa Segmental-DTW baseline on the same corpus.

Klíčová slova

Acoustic Unit Discovery, Low-ResourceASR, Bayesian Model, Informative Prior.

URL
Rok
2018
Strany
5939–5943
Sborník
Proceedings of ICASSP 2018
Konference
IEEE International Conference on Acoustics, Speech and Signal Processing
ISBN
978-1-5386-4658-8
Vydavatel
IEEE Signal Processing Society
Místo
Calgary
DOI
UT WoS
000446384606020
EID Scopus
BibTeX
@inproceedings{BUT155041,
  author="ONDEL YANG, L. and GODARD, P. and BESACIER, L. and LARSEN, E. and HASEGAWA-JOHNSON, M. and SCHARENBORG, O. and DUPOUX, E. and BURGET, L. and YVON, F. and KHUDANPUR, S.",
  title="Bayesian Models for Unit Discovery on a Very Low Resource Language",
  booktitle="Proceedings of ICASSP 2018",
  year="2018",
  pages="5939--5943",
  publisher="IEEE Signal Processing Society",
  address="Calgary",
  doi="10.1109/ICASSP.2018.8461545",
  isbn="978-1-5386-4658-8",
  url="https://www.fit.vut.cz/research/publication/11719/"
}
Soubory
Projekty
IT4Innovations excellence in science, MŠMT, Národní program udržitelnosti II, LQ1602, zahájení: 2016-01-01, ukončení: 2020-12-31, ukončen
Zpracování, zobrazování a analýza multimediálních a 3D dat, VUT, Vnitřní projekty VUT, FIT-S-17-3984, zahájení: 2017-03-01, ukončení: 2020-02-29, ukončen
Výzkumné skupiny
Pracoviště
Nahoru