Detail výsledku

DNN-based SRE Systems in Multi-Language Conditions

NOVOTNÝ, O.; MATĚJKA, P.; GLEMBEK, O.; PLCHOT, O.; GRÉZL, F.; BURGET, L.; ČERNOCKÝ, J. DNN-based SRE Systems in Multi-Language Conditions. Brno: Faculty of Information Technology BUT, 2016. 5 p.
Typ
výzkumná zpráva
Jazyk
anglicky
Autoři
Novotný Ondřej, Ing., Ph.D., UPGM (FIT)
Matějka Pavel, Ing., Ph.D., UPGM (FIT)
Glembek Ondřej, Ing., Ph.D., UPGM (FIT)
Plchot Oldřich, Ing., Ph.D., UPGM (FIT)
Grézl František, Ing., Ph.D., UPGM (FIT)
Burget Lukáš, doc. Ing., Ph.D., UPGM (FIT)
Černocký Jan, prof. Dr. Ing., UPGM (FIT)
Abstrakt

This work studies the usage of the (currently state-of-the-art) Deep NeuralNetworks (DNN) i-vector/PLDA-based speaker recognition systems inmulti-language (especially non-English) conditions. On the ``Language Pack''of the PRISM set, we evaluate the systems' performance using NIST's standardmetrics. We study the use of multi-lingual DNN in place of the originalEnglish DNN on these multi-language conditions. We show that not only the gainfrom using DNNs vanishes, but also the DNN-based systems tend to producede-calibrated scores under the studied conditions. This work gives suggestionsfor directions of future research rather than any particular solutions.

Klíčová slova

speaker recognition, multilinguality, DNN

URL
Rok
2016
Strany
5
Vydavatel
Faculty of Information Technology BUT
Místo
Brno
BibTeX
@techreport{BUT168427,
  author="Ondřej {Novotný} and Pavel {Matějka} and Ondřej {Glembek} and Oldřich {Plchot} and František {Grézl} and Lukáš {Burget} and Jan {Černocký}",
  title="DNN-based SRE Systems in Multi-Language Conditions",
  year="2016",
  publisher="Faculty of Information Technology BUT",
  address="Brno",
  pages="5",
  url="http://www.fit.vutbr.cz/research/groups/speech/publi/2016/dnn-based-sre_TECH_REP_v0.pdf"
}
Pracoviště
Nahoru