Detail výsledku

A convenient graph connectedness for digital imagery

ŠLAPAL, J. A convenient graph connectedness for digital imagery. In High Performance Computing in Science and Engineering 2019. Lecture Notes in Computer Science. Lecture Notes in Computer Science. Cham: Springer International Publishing, 2021. no. 12456, p. 150-162. ISBN: 978-3-030-67076-4. ISSN: 0302-9743.
Typ
článek ve sborníku konference
Jazyk
anglicky
Autoři
Abstrakt

In a simple undirected graph, we introduce a special connectedness induced by a set of paths of length 2. We focus on the 8-adjacency graph (with the vertex set Z^2) and study the connectedness induced by a certain set of paths of length 2 in the graph. For this connectedness, we prove a digital Jordan curve theorem by determining the Jordan curves, i.e., the circles in the graph that separate  Z^2 into exactly two connected components.

Klíčová slova

Simple undirected graph, connectedness, digital plane, Khalimsky topology, Jordan curve theorem.

URL
Rok
2021
Strany
150–162
Časopis
Lecture Notes in Computer Science, roč. 2021, č. 12456, ISSN 0302-9743
Sborník
High Performance Computing in Science and Engineering 2019
Řada
Lecture Notes in Computer Science
Konference
High Performance Computing in Science and Engineering 2019
ISBN
978-3-030-67076-4
Vydavatel
Springer International Publishing
Místo
Cham
DOI
EID Scopus
BibTeX
@inproceedings{BUT168483,
  author="Josef {Šlapal}",
  title="A convenient graph connectedness for digital imagery",
  booktitle="High Performance Computing in Science and Engineering 2019",
  year="2021",
  series="Lecture Notes in Computer Science",
  journal="Lecture Notes in Computer Science",
  volume="2021",
  number="12456",
  pages="150--162",
  publisher="Springer International Publishing",
  address="Cham",
  doi="10.1007/978-3-030-67077-1\{_}9",
  isbn="978-3-030-67076-4",
  issn="0302-9743",
  url="https://www.springer.com/gp/book/9783030670764"
}
Soubory
Projekty
IT4Innovations excellence in science, MŠMT, Národní program udržitelnosti II, LQ1602, zahájení: 2016-01-01, ukončení: 2020-12-31, ukončen
Výzkumné skupiny
Pracoviště
Nahoru