Detail výsledku

Speech Enhancement Using End-to-End Speech Recognition Objectives

SUBRAMANIAN, A.; WANG, X.; BASKAR, M.; WATANABE, S.; TANIGUCHI, T.; TRAN, D.; FUJITA, Y. Speech Enhancement Using End-to-End Speech Recognition Objectives. In IEEE Workshop on Applications of Signal Processing to Audio and Acoustics. New Paltz, NY: IEEE Signal Processing Society, 2019. p. 234-238. ISBN: 978-1-7281-1123-0.
Typ
článek ve sborníku konference
Jazyk
anglicky
Autoři
SUBRAMANIAN, A.
WANG, X.
Baskar Murali Karthick, Ing., Ph.D., UPGM (FIT)
Watanabe Shinji, FIT (FIT)
TANIGUCHI, T.
TRAN, D.
FUJITA, Y.
Abstrakt

Speech enhancement systems, which denoise and dereverberate distortedsignals, are usually optimized based on signal reconstructionobjectives including the maximum likelihood and minimum meansquare error. However, emergent end-to-end neural methods enableto optimize the speech enhancement system with more applicationorientedobjectives. For example, we can jointly optimize speechenhancement and automatic speech recognition (ASR) only withASR error minimization criteria. The major contribution of this paperis to investigate how a system optimized based on the ASR objectiveimproves the speech enhancement quality on various signallevel metrics in addition to the ASR word error rate (WER) metric.We use a recently developed multichannel end-to-end (ME2E)system, which integrates neural dereverberation, beamforming, andattention-based speech recognition within a single neural network.Additionally, we propose to extend the dereverberation sub networkof ME2E by dynamically varying the filter order in linear predictionby using reinforcement learning, and extend the beamformingsubnetwork by incorporating the estimation of a speech distortionfactor. The experiments reveal how well different signal level metricscorrelate with the WER metric, and verify that learning-basedspeech enhancement can be realized by end-to-end ASR trainingobjectives without using parallel clean and noisy data.

Klíčová slova

speech enhancement, speech recognition, neuraldereverberation, neural beamformer, training objectives

URL
Rok
2019
Strany
234–238
Sborník
IEEE Workshop on Applications of Signal Processing to Audio and Acoustics
Konference
IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA)
ISBN
978-1-7281-1123-0
Vydavatel
IEEE Signal Processing Society
Místo
New Paltz, NY
DOI
UT WoS
000527800200048
EID Scopus
BibTeX
@inproceedings{BUT170323,
  author="SUBRAMANIAN, A. and WANG, X. and BASKAR, M. and WATANABE, S. and TANIGUCHI, T. and TRAN, D. and FUJITA, Y.",
  title="Speech Enhancement Using End-to-End Speech Recognition Objectives",
  booktitle="IEEE Workshop on Applications of Signal Processing to Audio and Acoustics",
  year="2019",
  pages="234--238",
  publisher="IEEE Signal Processing Society",
  address="New Paltz, NY",
  doi="10.1109/WASPAA.2019.8937250",
  isbn="978-1-7281-1123-0",
  url="https://ieeexplore.ieee.org/document/8937250"
}
Soubory
Projekty
IT4Innovations excellence in science, MŠMT, Národní program udržitelnosti II, LQ1602, zahájení: 2016-01-01, ukončení: 2020-12-31, ukončen
Moderní metody zpracování, analýzy a zobrazování multimediálních a 3D dat, VUT, Vnitřní projekty VUT, FIT-S-20-6460, zahájení: 2020-03-01, ukončení: 2023-02-28, ukončen
Výzkumné skupiny
Pracoviště
Nahoru