Detail výsledku

Jointly Trained Transformers Models for Spoken Language Translation

VYDANA, H.; KARAFIÁT, M.; ŽMOLÍKOVÁ, K.; BURGET, L.; ČERNOCKÝ, J. Jointly Trained Transformers Models for Spoken Language Translation. In ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Toronto, Ontario: IEEE Signal Processing Society, 2021. p. 7513-7517. ISBN: 978-1-7281-7605-5.
Typ
článek ve sborníku konference
Jazyk
anglicky
Autoři
Vydana Hari Krishna, UPGM (FIT)
Karafiát Martin, Ing., Ph.D., UPGM (FIT)
Žmolíková Kateřina, Ing., Ph.D., UPGM (FIT)
Burget Lukáš, doc. Ing., Ph.D., UPGM (FIT)
Černocký Jan, prof. Dr. Ing., UPGM (FIT)
Abstrakt

End-to-End and cascade (ASR-MT) spoken language translation(SLT) systems are reaching comparable performances, however,a large degradation is observed when translating the ASR hypothesisin comparison to using oracle input text. In this work, degradationin performance is reduced by creating an End-to-End differentiablepipeline between the ASR and MT systems. In this work, we trainSLT systems with ASR objective as an auxiliary loss and both thenetworks are connected through the neural hidden representations.This training has an End-to-End differentiable path with respectto the final objective function and utilizes the ASR objective forbetter optimization. This architecture has improved the BLEU scorefrom 41.21 to 44.69. Ensembling the proposed architecture withindependently trained ASR and MT systems further improved theBLEU score from 44.69 to 46.9. All the experiments are reported onEnglish-Portuguese speech translation task using the How2 corpus.The final BLEU score is on-par with the best speech translationsystem on How2 dataset without using any additional training dataand language model and using fewer parameters.

Klíčová slova

Spoken Language Translation, Transformers, Jointtraining, How2 dataset, Auxiliary loss, ASR objective, Coupled decoding, End-to-End differentiable pipeline.

URL
Rok
2021
Strany
7513–7517
Sborník
ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
Konference
2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
ISBN
978-1-7281-7605-5
Vydavatel
IEEE Signal Processing Society
Místo
Toronto, Ontario
DOI
UT WoS
000704288407158
EID Scopus
BibTeX
@inproceedings{BUT175791,
  author="Hari Krishna {Vydana} and Martin {Karafiát} and Kateřina {Žmolíková} and Lukáš {Burget} and Jan {Černocký}",
  title="Jointly Trained Transformers Models for Spoken Language Translation",
  booktitle="ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)",
  year="2021",
  pages="7513--7517",
  publisher="IEEE Signal Processing Society",
  address="Toronto, Ontario",
  doi="10.1109/ICASSP39728.2021.9414159",
  isbn="978-1-7281-7605-5",
  url="https://www.fit.vut.cz/research/publication/12522/"
}
Soubory
Projekty
Automatický sběr a zpracování hlasových dat z letecké komunikace, EU, Horizon 2020, zahájení: 2019-11-01, ukončení: 2022-02-28, ukončen
IARPA Strojový překlad pro anglické vyhledávání informací v libovolném jazyce (MATERIAL) - Automatické vyhledávání informací v cizím jazyce (FLAIR), IARPA, zahájení: 2017-09-21, ukončení: 2021-10-22, ukončen
Neuronové reprezentace v multimodálním a mnohojazyčném modelování, GAČR, Grantové projekty exelence v základním výzkumu EXPRO - 2019, GX19-26934X, zahájení: 2019-01-01, ukončení: 2023-12-31, ukončen
Výzkumné skupiny
Pracoviště
Nahoru