Detail výsledku

Usted: Improving ASR with a Unified Speech and Text Encoder-Decoder

YUSUF, B.; GANDHE, A.; SOKOLOV, A. Usted: Improving ASR with a Unified Speech and Text Encoder-Decoder. In ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings. Singapore: IEEE Signal Processing Society, 2022. p. 8297-8301. ISBN: 978-1-6654-0540-9.
Typ
článek ve sborníku konference
Jazyk
anglicky
Autoři
Yusuf Bolaji, UPGM (FIT)
Gandhe Ankur
Sokolov Alex
Abstrakt

Improving end-to-end speech recognition by incorporating external text data has been a longstanding research topic. There has been a recent focus on training E2E ASR models that get the performance benefits of external text data without incurring the extra cost of evaluating an external language model at inference time. In this work, we propose training ASR model jointly with a set of text-to-text auxiliary tasks with which it shares a decoder and parts of the encoder. When we jointly train ASR and masked language model with the 960-hour Librispeech and Opensubtitles data respectively, we observe WER reductions of 16% and 20% on test-other and test-clean respectively over an ASR-only baseline without any extra cost at inference time, and reductions of 6% and 8% compared to a stronger MUTE-L baseline which trains the decoder with the same text data as our model. We achieve further improvements when we train masked language model on Librispeech data or when we use machine translation as the auxiliary task, without significantly sacrificing performance on the task itself.

Klíčová slova

sequence-to-sequence, multitask, end-to-end ASR, masked language model, machine translation

URL
Rok
2022
Strany
8297–8301
Sborník
ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Konference
2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP)
ISBN
978-1-6654-0540-9
Vydavatel
IEEE Signal Processing Society
Místo
Singapore
DOI
UT WoS
000864187908121
EID Scopus
BibTeX
@inproceedings{BUT178379,
  author="Bolaji {Yusuf} and Ankur {Gandhe} and Alex {Sokolov}",
  title="Usted: Improving ASR with a Unified Speech and Text Encoder-Decoder",
  booktitle="ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings",
  year="2022",
  pages="8297--8301",
  publisher="IEEE Signal Processing Society",
  address="Singapore",
  doi="10.1109/ICASSP43922.2022.9746554",
  isbn="978-1-6654-0540-9",
  url="https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9746554"
}
Soubory
Projekty
Moderní metody zpracování, analýzy a zobrazování multimediálních a 3D dat, VUT, Vnitřní projekty VUT, FIT-S-20-6460, zahájení: 2020-03-01, ukončení: 2023-02-28, ukončen
Výzkumné skupiny
Pracoviště
Nahoru