Detail výsledku

DPCCN: Densely-Connected Pyramid Complex Convolutional Network for Robust Speech Separation and Extraction

HAN, J.; LONG, Y.; BURGET, L.; ČERNOCKÝ, J. DPCCN: Densely-Connected Pyramid Complex Convolutional Network for Robust Speech Separation and Extraction. In ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings. Singapore: IEEE Signal Processing Society, 2022. p. 7292-7296. ISBN: 978-1-6654-0540-9.
Typ
článek ve sborníku konference
Jazyk
anglicky
Autoři
Abstrakt

In recent years, a number of time-domain speech separation methodshave been proposed. However, most of them are very sensitiveto the environments and wide domain coverage tasks. In thispaper, from the time-frequency domain perspective, we propose adensely-connected pyramid complex convolutional network, termedDPCCN, to improve the robustness of speech separation under complicatedconditions. Furthermore, we generalize the DPCCN to targetspeech extraction (TSE) by integrating a new specially designedspeaker encoder. Moreover, we also investigate the robustness ofDPCCN to unsupervised cross-domain TSE tasks. A Mixture-Remixapproach is proposed to adapt the target domain acoustic characteristicsfor fine-tuning the source model. We evaluate the proposedmethods not only under noisy and reverberant in-domain condition,but also in clean but cross-domain conditions. Results show that forboth speech separation and extraction, the DPCCN-based systemsachieve significantly better performance and robustness than the currentlydominating time-domain methods, especially for the crossdomaintasks. Particularly, we find that the Mixture-Remix finetuningwith DPCCN significantly outperforms the TD-SpeakerBeamfor unsupervised cross-domain TSE, with around 3.5 dB SISNR improvementon target domain test set, without any source domain performancedegradation.

Klíčová slova

DPCCN, Mixture-Remix, cross-domain, speech separation, unsupervised target speech extraction

URL
Rok
2022
Strany
7292–7296
Sborník
ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Konference
2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP)
ISBN
978-1-6654-0540-9
Vydavatel
IEEE Signal Processing Society
Místo
Singapore
DOI
UT WoS
000864187907119
EID Scopus
BibTeX
@inproceedings{BUT178382,
  author="Jiangyu {Han} and Yanhua {Long} and Lukáš {Burget} and Jan {Černocký}",
  title="DPCCN: Densely-Connected Pyramid Complex Convolutional Network for Robust Speech Separation and Extraction",
  booktitle="ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings",
  year="2022",
  pages="7292--7296",
  publisher="IEEE Signal Processing Society",
  address="Singapore",
  doi="10.1109/ICASSP43922.2022.9747340",
  isbn="978-1-6654-0540-9",
  url="https://ieeexplore.ieee.org/document/9747340"
}
Soubory
Projekty
Multi-lingualita v řečových technologiích, MŠMT, INTER-EXCELLENCE - Podprogram INTER-ACTION, LTAIN19087, zahájení: 2020-01-01, ukončení: 2023-08-31, ukončen
Neuronové reprezentace v multimodálním a mnohojazyčném modelování, GAČR, Grantové projekty exelence v základním výzkumu EXPRO - 2019, GX19-26934X, zahájení: 2019-01-01, ukončení: 2023-12-31, ukončen
Výzkumné skupiny
Pracoviště
Nahoru