Detail výsledku

A Two-Step Approach to Leverage Contextual Data: Speech Recognition in Air-Traffic Communications

NIGMATULINA, I.; ZULUAGA-GOMEZ, J.; PRASAD, A.; SARFJOO, S.; MOTLÍČEK, P. A Two-Step Approach to Leverage Contextual Data: Speech Recognition in Air-Traffic Communications. In ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings. Singapore: IEEE Signal Processing Society, 2022. p. 6282-6286. ISBN: 978-1-6654-0540-9.
Typ
článek ve sborníku konference
Jazyk
anglicky
Autoři
NIGMATULINA, I.
ZULUAGA-GOMEZ, J.
Prasad Amrutha
SARFJOO, S.
Motlíček Petr, doc. Ing., Ph.D., UPGM (FIT)
Abstrakt

Automatic Speech Recognition (ASR), as the assistance of speech communication between pilots and air-traffic controllers, can significantly reduce the complexity of the task and increase the reliability of transmitted information. ASR application can lead to a lower number of incidents caused by misunderstanding and improve air traffic management (ATM) efficiency. Evidently, high accuracy predictions, especially, of key information, i.e., callsigns and commands, are required to minimize the risk of errors. We prove that combining the benefits of ASR and Natural Language Processing (NLP) methods to make use of surveillance data (i.e. additional modality) helps to considerably improve the recognition of callsigns (named entity). In this paper, we investigate a two-step callsign boosting approach: (1) at the 1st step (ASR), weights of probable callsign n-grams are reduced in G.fst and/or in the decoding FST (lattices), (2) at the 2nd step (NLP), callsigns extracted from the improved recognition outputs with Named Entity Recognition (NER) are correlated with the surveillance data to select the most suitable one. Boosting callsign n-grams with the combination of ASR and NLP methods eventually leads up to 53.7% of an absolute, or 60.4% of a relative, improvement in callsign recognition.

Klíčová slova

automatic speech recognition, human-computer interaction, Air-Traffic Control, Air-Surveillance Data, Callsign Detection, finite-state transducers

URL
Rok
2022
Strany
6282–6286
Sborník
ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Konference
2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP)
ISBN
978-1-6654-0540-9
Vydavatel
IEEE Signal Processing Society
Místo
Singapore
DOI
UT WoS
000864187906114
EID Scopus
BibTeX
@inproceedings{BUT178411,
  author="NIGMATULINA, I. and ZULUAGA-GOMEZ, J. and PRASAD, A. and SARFJOO, S. and MOTLÍČEK, P.",
  title="A Two-Step Approach to Leverage Contextual Data: Speech Recognition in Air-Traffic Communications",
  booktitle="ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings",
  year="2022",
  pages="6282--6286",
  publisher="IEEE Signal Processing Society",
  address="Singapore",
  doi="10.1109/ICASSP43922.2022.9746563",
  isbn="978-1-6654-0540-9",
  url="https://ieeexplore.ieee.org/document/9746563"
}
Soubory
Projekty
Automatický sběr a zpracování hlasových dat z letecké komunikace, EU, Horizon 2020, zahájení: 2019-11-01, ukončení: 2022-02-28, ukončen
HAAWAII - Highly Automated Air Traffic Controller Workstations with Artificial Intelligence Integration, EU, Horizon 2020, H2020-SESAR-2019-2, zahájení: 2020-06-01, ukončení: 2022-11-30, ukončen
Výzkumné skupiny
Pracoviště
Nahoru