Detail výsledku

Connectivity with respect to α-discrete closure operators

ŠLAPAL, J. Connectivity with respect to α-discrete closure operators. Open Mathematics, 2022, vol. 2022, no. 20, p. 682-688. ISSN: 2391-5455.
Typ
článek v časopise
Jazyk
anglicky
Autoři
Abstrakt

We discuss certain closure operators that generalize the Alexandroff topologies. Such a closure
operator is defined for every ordinal α > 0 in such a way that the closure of a set A is given by closures of
certain α-indexed sequences formed by points of A. It is shown that connectivity with respect to such a
closure operator can be viewed as a special type of path connectivity. This makes it possible to apply the
operators in solving problems based on employing a convenient connectivity such as problems of digital
image processing. One such application is presented providing a digital analogue of the Jordan curve
theorem.

Klíčová slova

closure operator, ordinal (number), ordinal-indexed sequence, connectivity, digital Jordan curve

URL
Rok
2022
Strany
682–688
Časopis
Open Mathematics, roč. 2022, č. 20, ISSN 2391-5455
Vydavatel
De Gruyter
Místo
Warsaw, Poland
DOI
UT WoS
000843692700002
EID Scopus
BibTeX
@article{BUT179022,
  author="Josef {Šlapal}",
  title="Connectivity with respect to α-discrete closure operators",
  journal="Open Mathematics",
  year="2022",
  volume="2022",
  number="20",
  pages="682--688",
  doi="10.1515/math-2022-0046",
  issn="2391-5455",
  url="https://www.degruyter.com/document/doi/10.1515/math-2022-0046/html"
}
Pracoviště
Nahoru