Detail výsledku

Graph-based deep learning segmentation of EDS spectral images for automated mineral phase analysis

JURÁNEK, R.; VÝRAVSKÝ, J.; KOLÁŘ, M.; MOTL, D.; ZEMČÍK, P. Graph-based deep learning segmentation of EDS spectral images for automated mineral phase analysis. COMPUTERS & GEOSCIENCES, 2022, vol. 165, no. 8, p. 1-2. ISSN: 0098-3004.
Typ
článek v časopise
Jazyk
anglicky
Autoři
Juránek Roman, Ing., Ph.D., UPGM (FIT)
VÝRAVSKÝ, J.
Kolář Martin, M.Sc., Ph.D. et Ph.D., UPGM (FIT)
Motl David, Ing.
Zemčík Pavel, prof. Dr. Ing., dr. h. c., UPGM (FIT)
Abstrakt

We introduce a novel method for graph-based segmentation of spectral images obtained using a Scanning Electron Microscope (SEM) equipped with an Energy Dispersive X-ray spectroscopy (EDS) detector. The method exploits deep learning along with fusion of rasterized electron microscopy images with sparse EDS samples to obtain accurate mineralogy segmentation with high efficiency. Improvements over previous methods are with respect to the goal of an improved quantitative and qualitative assessment of segmentation, so that volumetric composition is indirectly addressed. We describe the principles of the novel method, show experimental results on real samples and demonstrate its advantages in comparison to the state of the art. The new method performs unsupervised clustering on sparsely measured EDS spectra, allowing for classification of unseen mineralogical compounds. Then, the processed spectra are combined with single channel SEM measurements through an optimized lattice, where a Markov Field is used to perform spatial segmentation in image. The benefit of this material-agnostic method is that clusters can then be (separately) classified, analyzed, and small grains with distinct EDS measurements are more accurately separated than in previous methods. These improved results are evaluated quantitatively on ground-truth electron microscope measurements with dense high-count EDS data, as well as visually through analysis by a mineralogist.

Klíčová slova

Segmentation, Deep learning, EDS spectra, Automated mineralogy

URL
Rok
2022
Strany
1–2
Časopis
COMPUTERS & GEOSCIENCES, roč. 165, č. 8, ISSN 0098-3004
DOI
UT WoS
000817165900005
EID Scopus
BibTeX
@article{BUT182942,
  author="JURÁNEK, R. and VÝRAVSKÝ, J. and KOLÁŘ, M. and MOTL, D. and ZEMČÍK, P.",
  title="Graph-based deep learning segmentation of EDS spectral images for automated mineral phase analysis",
  journal="COMPUTERS & GEOSCIENCES",
  year="2022",
  volume="165",
  number="8",
  pages="1--2",
  doi="10.1016/j.cageo.2022.105109",
  issn="0098-3004",
  url="https://www.sciencedirect.com/science/article/pii/S0098300422000668"
}
Projekty
Moderní metody zpracování, analýzy a zobrazování multimediálních a 3D dat, VUT, Vnitřní projekty VUT, FIT-S-20-6460, zahájení: 2020-03-01, ukončení: 2023-02-28, ukončen
Pracoviště
Nahoru