Detail výsledku

A digital Jordan surface theorem with respect to a graph connectedness

ŠLAPAL, J. A digital Jordan surface theorem with respect to a graph connectedness. Open Mathematics, 2023, vol. 21, no. 1, p. 1-9. ISSN: 2391-5455.
Typ
článek v časopise
Jazyk
anglicky
Autoři
Abstrakt

After introducing a graph connectedness induced by a given set of paths of the same length, we focus on the 2-adjacency graph on the digital line Z with a certain set of paths of length n for every positive integer n . The connectedness in the strong product of three copies of the graph is used to define digital Jordan surfaces. These are obtained as polyhedral surfaces bounding the polyhedra that can be face-to-face tiled with digital tetrahedra.

Klíčová slova

simple graph, strong product, path, connectedness, digital space, Jordan surface; MSC 2020: 52C22, 68R10

URL
Rok
2023
Strany
1–9
Časopis
Open Mathematics, roč. 21, č. 1, ISSN 2391-5455
Vydavatel
De Gruyter
Místo
Poland
DOI
UT WoS
001137180300001
EID Scopus
BibTeX
@article{BUT186967,
  author="Josef {Šlapal}",
  title="A digital Jordan surface theorem with respect to a graph connectedness",
  journal="Open Mathematics",
  year="2023",
  volume="21",
  number="1",
  pages="1--9",
  doi="10.1515/math-2023-0172",
  issn="2391-5455",
  url="https://www.degruyter.com/document/doi/10.1515/math-2023-0172/html"
}
Soubory
Pracoviště
Nahoru