Detail výsledku

Node-weighted Graph Convolutional Network for Depression Detection in Transcribed Clinical Interviews

BURDISSO, S.; VILLATORO-TELLO, E.; MADIKERI, S.; MOTLÍČEK, P. Node-weighted Graph Convolutional Network for Depression Detection in Transcribed Clinical Interviews. In Proceedings of the Annual Conference of International Speech Communication Association, INTERSPEECH. Proceedings of Interspeech. Dublin: International Speech Communication Association, 2023. no. 8, p. 3617-3621. ISSN: 1990-9772.
Typ
článek ve sborníku konference
Jazyk
anglicky
Autoři
Burdisso Sergio
VILLATORO-TELLO, E.
Madikeri Srikanth, FIT (FIT)
Motlíček Petr, doc. Ing., Ph.D., UPGM (FIT)
Abstrakt

We propose a simple approach for weighting self-
connecting edges in a Graph Convolutional Network (GCN)
and show its impact on depression detection from transcribed
clinical interviews. To this end, we use a GCN for model-
ing non-consecutive and long-distance semantics to classify the
transcriptions into depressed or control subjects. The proposed
method aims to mitigate the limiting assumptions of locality and
the equal importance of self-connections vs. edges to neighbor-
ing nodes in GCNs, while preserving attractive features such as
low computational cost, data agnostic, and interpretability capa-
bilities. We perform an exhaustive evaluation in two benchmark
datasets. Results show that our approach consistently outper-
forms the vanilla GCN model as well as previously reported re-
sults, achieving an F1=0.84% on both datasets. Finally, a qual-
itative analysis illustrates the interpretability capabilities of the
proposed approach and its alignment with previous findings in
psychology.

Klíčová slova

depression detection, graph neural networks,
node weighted graphs, limited training data, interpretability.

URL
Rok
2023
Strany
3617–3621
Časopis
Proceedings of Interspeech, roč. 2023, č. 8, ISSN 1990-9772
Sborník
Proceedings of the Annual Conference of International Speech Communication Association, INTERSPEECH
Konference
Interspeech Conference
Vydavatel
International Speech Communication Association
Místo
Dublin
DOI
EID Scopus
BibTeX
@inproceedings{BUT187755,
  author="BURDISSO, S. and VILLATORO-TELLO, E. and MADIKERI, S. and MOTLÍČEK, P.",
  title="Node-weighted Graph Convolutional Network for Depression Detection in Transcribed Clinical Interviews",
  booktitle="Proceedings of the Annual Conference of International Speech Communication Association, INTERSPEECH",
  year="2023",
  journal="Proceedings of Interspeech",
  volume="2023",
  number="8",
  pages="3617--3621",
  publisher="International Speech Communication Association",
  address="Dublin",
  doi="10.21437/Interspeech.2023-1923",
  issn="1990-9772",
  url="https://www.isca-archive.org/interspeech_2023/burdisso23_interspeech.pdf"
}
Soubory
Projekty
Soudobé metody zpracování, analýzy a zobrazování multimediálních a 3D dat, VUT, Vnitřní projekty VUT, FIT-S-23-8278, zahájení: 2023-03-01, ukončení: 2026-02-28, řešení
Výzkumné skupiny
Pracoviště
Nahoru