Detail výsledku

Using Computer Vision and Machine Learning for Efficient Parking Management: A Case Study

FRÝZA, T.; KUŽELA, M.; ZELENÝ, O. Using Computer Vision and Machine Learning for Efficient Parking Management: A Case Study. In Proceedings of 13th Mediterranean Conference on Embedded Computing (MECO 2024). Institute of Electrical and Electronics Engineers Inc., 2024. 4 p. ISBN: 979-8-3503-8756-8.
Typ
článek ve sborníku konference
Jazyk
anglicky
Autoři
Frýza Tomáš, doc. Ing., Ph.D., UREL (FEKT)
Kužela Miloslav, Bc., FEKT (FEKT)
Zelený Ondřej, Ing., UREL (FEKT)
Abstrakt

This paper addresses the challenges associated with urban mobility and introduces a~low-complexity system for detecting parking lot occupancy using machine learning and computer vision techniques. Through a~field experiment at a~Czech university, images of parking areas were captured to create a~dataset titled T10Lot, and classified to get parking spot occupancy using Raspberry Pi computer. Results indicate satisfactory accuracy despite challenges such as varying lighting conditions and weather.

Klíčová slova

Machine learning, smart parking, edge device, classifier, IoT

URL
Rok
2024
Strany
4
Sborník
Proceedings of 13th Mediterranean Conference on Embedded Computing (MECO 2024)
Konference
2024 13th Mediterranean Conference on Embedded Computing (MECO)
ISBN
979-8-3503-8756-8
Vydavatel
Institute of Electrical and Electronics Engineers Inc.
DOI
UT WoS
001268606200023
EID Scopus
BibTeX
@inproceedings{BUT189015,
  author="Tomáš {Frýza} and Miloslav {Kužela} and Ondřej {Zelený}",
  title="Using Computer Vision and Machine Learning for Efficient Parking Management: A Case Study",
  booktitle="Proceedings of 13th Mediterranean Conference on Embedded Computing (MECO 2024)",
  year="2024",
  pages="4",
  publisher="Institute of Electrical and Electronics Engineers Inc.",
  doi="10.1109/MECO62516.2024.10577808",
  isbn="979-8-3503-8756-8",
  url="https://ieeexplore.ieee.org/document/10577808"
}
Pracoviště
Nahoru