Detail výsledku

Abstraction-based segmental simulation of reaction networks using adaptive memoization

HELFRICH, M.; ANDRIUSHCHENKO, R.; ČEŠKA, M.; KŘETÍNSKÝ, J.; MARTIČEK, Š.; ŠAFRÁNEK, D. Abstraction-based segmental simulation of reaction networks using adaptive memoization. BMC BIOINFORMATICS, 2024, vol. 25, no. 1, p. 1-24. ISSN: 1471-2105.
Typ
článek v časopise
Jazyk
anglicky
Autoři
Helfrich Martin
Andriushchenko Roman, Ing., UITS (FIT)
Češka Milan, doc. RNDr., Ph.D., UITS (FIT)
KŘETÍNSKÝ, J.
Martiček Štefan, Ing.
Šafránek David, doc. RNDr., Ph.D.
Abstrakt

Background

Stochastic models are commonly employed in the system and synthetic biology to study the effects of stochastic fluctuations emanating from reactions involving species with low copy-numbers. Many important models feature complex dynamics, involving a state-space explosion, stiffness, and multimodality, that complicate the quantitative analysis needed to understand their stochastic behavior. Direct numerical analysis of such models is typically not feasible and generating many simulation runs that adequately approximate the model's dynamics may take a prohibitively long time.

Results

We propose a new memoization technique that leverages a population-based abstraction and combines previously generated parts of simulations, called segments, to generate new simulations more efficiently while preserving the original system's dynamics and its diversity. Our algorithm adapts online to identify the most important abstract states and thus utilizes the available memory efficiently.

Conclusion

We demonstrate that in combination with a novel fully automatic and adaptive hybrid simulation scheme, we can speed up the generation of trajectories significantly and correctly predict the transient behavior of complex stochastic systems.

Klíčová slova

Reaction networks, stochastic simulation, population abstraction, memoization

URL
Rok
2024
Strany
1–24
Časopis
BMC BIOINFORMATICS, roč. 25, č. 1, ISSN 1471-2105
DOI
UT WoS
001351556400001
EID Scopus
BibTeX
@article{BUT193584,
  author="HELFRICH, M. and ANDRIUSHCHENKO, R. and ČEŠKA, M. and KŘETÍNSKÝ, J. and MARTIČEK, Š. and ŠAFRÁNEK, D.",
  title="Abstraction-based segmental simulation of reaction networks using adaptive memoization",
  journal="BMC BIOINFORMATICS",
  year="2024",
  volume="25",
  number="1",
  pages="1--24",
  doi="10.1186/s12859-024-05966-5",
  issn="1471-2105",
  url="https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-024-05966-5"
}
Projekty
Computer-Aided Quantitative Synthesis, GAČR, Juniorské granty, GJ20-02328Y, zahájení: 2020-01-01, ukončení: 2022-12-31, ukončen
Reliable, Secure, and Intelligent Computer Systems, VUT, Vnitřní projekty VUT, FIT-S-23-8151, zahájení: 2023-03-01, ukončení: 2026-02-28, řešení
Výzkumné skupiny
Pracoviště
Nahoru