Detail výsledku

Neural network topologies and bottle neck features in speech recognition

GRÉZL, F.; KARAFIÁT, M.; ČERNOCKÝ, J. Neural network topologies and bottle neck features in speech recognition. Brno: 2007. p. 78-82.
Typ
prezentace, poster
Jazyk
anglicky
Autoři
Abstrakt

Different neural net topologies for estimating features for speechrecognition were presented. We introduced bottle-neck structure intopreviously proposed Split Context. This was done mainly to reduce sizeof resulting neural net, which serves as feature estimator. Whenbottle-neck outputs are used also as final outputs from neural networkinstead of probability estimates, the reduction of word error rate isalso reached.

Klíčová slova

neural networks, topologies, speech recognition, bottle-neck features

URL
Rok
2007
Strany
78–82
Konference
Machine Learning and Multimodal Interaction
Místo
Brno
BibTeX
@misc{BUT63689,
  author="František {Grézl} and Martin {Karafiát} and Jan {Černocký}",
  title="Neural network topologies and bottle neck features in speech recognition",
  year="2007",
  pages="78--82",
  address="Brno",
  url="http://www.fit.vutbr.cz/~grezl/publi/mlmi2007.pdf"
}
Projekty
Nové směry ve výzkumu a využití hlasových technologií, GAČR, Standardní projekty, GA102/05/0278, zahájení: 2005-01-01, ukončení: 2007-12-31, ukončen
Výzkumné skupiny
Pracoviště
Nahoru