Detail výsledku
Positive decreasing solutions of half-linear dynamic equations
VÍTOVEC, J. Positive decreasing solutions of half-linear dynamic equations. In XXIX International Colloquium on the Management of the Educational Process. Proceedings. Brno: Univerzita obrany, 2011. p. 1-9. ISBN: 978-80-7231-779-0.
Typ
článek ve sborníku konference
Jazyk
anglicky
Autoři
Vítovec Jiří, Mgr., Ph.D., UMAT (FEKT)
Abstrakt
The aim of this contribution is to provide complete and precise information on asymptotic behaviour of all positive decreasing solutions of certain half-linear dynamic equation. We will show that these solutions are normalized regularly or rapidly varying if and only if the coeficient p satisfies certain integral conditions. Moreover, the index of regular variation will be shown to be related to the limit behaviour of the coefficient p. In addition to the theory of rapid variation we established a missing representation formula for rapidly varying functions on time scales.
Klíčová slova
Regularly varying function; rapidly varying function; time scale; Representation theorem; half-linear dynamic equation
Rok
2011
Strany
1–9
Sborník
XXIX International Colloquium on the Management of the Educational Process. Proceedings.
Konference
XXIX International Colloquium on the Management of Educational Process
ISBN
978-80-7231-779-0
Vydavatel
Univerzita obrany
Místo
Brno
BibTeX
@inproceedings{BUT72474,
author="Jiří {Vítovec}",
title="Positive decreasing solutions of half-linear dynamic equations",
booktitle="XXIX International Colloquium on the Management of the Educational Process. Proceedings.",
year="2011",
pages="1--9",
publisher="Univerzita obrany",
address="Brno",
isbn="978-80-7231-779-0"
}
Pracoviště
Ústav matematiky
(UMAT)