Detail práce
Semi-Supervised Speech-to-Text Recognition with Text-to-Speech Critic
Modely pro automatické rozpoznávání řeči (ASR) vyžadují pro dosažení přijatelné přesnosti velké množství trénovacích dat. Z tohoto důvodu se v poslední době zvýšil zájem o trénování seq2seq modelů bez dohledu a s částečným dohledem. Tato práce vychází z nedávných výsledků, které ukázaly výrazné zlepšení trénování s částečným dohledem pomocí cyklické konzistence a souvisejících technik. Ty využívají trénovací postupy a kritéria schopná pomocí kombinace ASR s modely převodu textu na řeč (TTS) zužitkovat nesouvisející řečová a/nebo textová data.
Tato práce nejprve navrhuje nový rámec pro modelování kombinující diferencovatelné end-to-end kritérium ASR->TTS s kritériem TTS->ASR. Tato metoda dokáže využít nesouvisející řečová a textová data a překonat související techniky ve slovní chybovosti (WER). Práce obsahuje rozsáhlou sadu výsledků analyzujících vliv množství dat i vliv podílu řeči a textu na opravách chyb. Výsledky dokládají konzistentní zlepšení na korpusech WSJ a LibriSpeech.
Práce se rovněž zabývá omezeními modelu ASR<->TTS v podmínkách mimo doménu trénovacích dat (out-of-domain). Navrhujeme vylepšený model ASR<->TTS (EAT), zahrnující dva klíčové komponenty: 1) směr ASR->TTS je doplněn jazykovým model, který penalizuje hypotézy ASR před jejich vstupem do TTS; a 2) ve směru TTS->ASR je zavedena regularizace trénovaná bez dohledu tak, aby opravovala syntetizovanou řeč před vstupem do modelu ASR. Zkoumáme strategie trénování a účinnost modelu EAT a porovnáme jej s přístupy umělého zvyšování množství (augmentace) dat. Výsledky ukazují, že model EAT snižuje rozdíl v úspěšnosti mezi trénováním bez dohledu a trénováním s částečným dohledem absolutně o 2,6% WER na LibriSpeech datech a o 2,7% WER na BABEL datech.
Automatické rozpoznávání řeči, převod textu na řeč, trénování s částečným dohledem, cyklická konzistence, nesouvisející řeč a textová data, regularizace.
@phdthesis{FITPT1044, author = "Karthick Murali Baskar", type = "Diserta\v{c}n\'{i} pr\'{a}ce", title = "Semi-Supervised Speech-to-Text Recognition with Text-to-Speech Critic", school = "Vysok\'{e} u\v{c}en\'{i} technick\'{e} v Brn\v{e}, Fakulta informa\v{c}n\'{i}ch technologi\'{i}", year = 2023, location = "Brno, CZ", language = "english", url = "https://www.fit.vut.cz/study/phd-thesis/1044/" }