Detail výsledku

Comparison of Semantic Segmentation Approaches for Horizon/Sky Line Detection

AHMAD, T.; CAMPR, P.; ČADÍK, M.; BEBIS, G. Comparison of Semantic Segmentation Approaches for Horizon/Sky Line Detection. In Proceedings of the International Joint Conference on Neural Networks (IJCNN). Anchorage: Institute of Electrical and Electronics Engineers, 2017. p. 4436-4443. ISBN: 978-1-4799-1961-1.
Typ
článek ve sborníku konference
Jazyk
anglicky
Autoři
Ahmad Touqeer
Campr Pavel
Čadík Martin, doc. Ing., Ph.D., UPGM (FIT)
Bebis George
Abstrakt

Horizon or skyline detection plays a vital role towards mountainous visual geo-localization, however most of the recently proposed visual geo-localization approaches rely on user-in-the-loop skyline detection methods. Detecting such a segmenting boundary fully autonomously would definitely be a step forward for these localization approaches. This paper provides a quantitative comparison of four such methods for autonomous horizon/sky line detection on an extensive data set. Specifically, we provide the comparison between four recently proposed segmentation methods; one explicitly targeting the problem of horizon detection, second focused on visual geo-localization but relying on accurate detection of skyline and other two proposed for general semantic segmentation -- Fully Convolutional Networks (FCN) and SegNet. Each of the first two methods is trained on a common training set comprised of about 200 images while models for the third and fourth method are fine tuned for sky segmentation problem through transfer learning using the same data set. Each of the method is tested on an extensive test set (about 3K images) covering various challenging geographical, weather, illumination and seasonal conditions. We report average accuracy and average absolute pixel error for each of the presented formulation.

Klíčová slova

horizon detection, skyline detection, geo-localization, segmentation methods, semantic segmentation, Fully Convolutional Networks

URL
Rok
2017
Strany
4436–4443
Sborník
Proceedings of the International Joint Conference on Neural Networks (IJCNN)
Konference
The 2017 International Joint Conference on Neural Networks
ISBN
978-1-4799-1961-1
Vydavatel
Institute of Electrical and Electronics Engineers
Místo
Anchorage
DOI
UT WoS
000426968704091
EID Scopus
BibTeX
@inproceedings{BUT133513,
  author="Touqeer {Ahmad} and Pavel {Campr} and Martin {Čadík} and George {Bebis}",
  title="Comparison of Semantic Segmentation Approaches for Horizon/Sky Line Detection",
  booktitle="Proceedings of the International Joint Conference on Neural Networks (IJCNN)",
  year="2017",
  pages="4436--4443",
  publisher="Institute of Electrical and Electronics Engineers",
  address="Anchorage",
  doi="10.1109/IJCNN.2017.7966418",
  isbn="978-1-4799-1961-1",
  url="http://cadik.posvete.cz/papers/ahmad17comparison.pdf"
}
Soubory
Projekty
Centrum kompetence ve zpracování vizuálních informací (V3C - Visual Computing Competence Center), TAČR, Centra kompetence, TE01020415, zahájení: 2012-05-01, ukončení: 2019-12-31, ukončen
IT4Innovations excellence in science, MŠMT, Národní program udržitelnosti II, LQ1602, zahájení: 2016-01-01, ukončení: 2020-12-31, ukončen
Vizuální lokalizace v přírodě, 4SGA8694, zahájení: 2014-03-01, ukončení: 2016-07-19, ukončen
Výzkumné skupiny
Pracoviště
Nahoru