Detail výsledku

Adaptive and Energy-Efficient Architectures for Machine Learning: Challenges, Opportunities, and Research Roadmap

SHAFIQUE, M.; HAFIZ, R.; JAVED, M.; ABBAS, S.; SEKANINA, L.; VAŠÍČEK, Z.; MRÁZEK, V. Adaptive and Energy-Efficient Architectures for Machine Learning: Challenges, Opportunities, and Research Roadmap. In 2017 IEEE Computer Society Annual Symposium on VLSI. Los Alamitos: IEEE Computer Society Press, 2017. p. 627-632. ISBN: 978-1-5090-6762-6.
Typ
článek ve sborníku konference
Jazyk
anglicky
Autoři
Shafique Muhammad
Hafiz Rehan
Javed Muhammad Usama
Abbas Sarmad
Sekanina Lukáš, prof. Ing., Ph.D., UPSY (FIT)
Vašíček Zdeněk, doc. Ing., Ph.D., UPSY (FIT)
Mrázek Vojtěch, Ing., Ph.D., UPSY (FIT)
Abstrakt


Gigantic rates of data production in the era of Big Data, Internet of Thing (IoT) / Internet of Everything (IoE), and Cyber Physical Systems (CSP) pose incessantly escalating demands for massive data processing, storage, and transmission while continuously interacting with the physical world under unpredictable, harsh, and energy-/power constrained scenarios. Therefore, such systems need to support not only the high performance capabilities at tight power/energy envelop, but also need to be intelligent/cognitive, self-learning, and robust. As a result, a hype in the artificial intelligence research (e.g., deep learning and other machine learning techniques) has surfaced in numerous communities. This paper discusses the challenges and opportunities for building energy-efficient and adaptive architectures for machine learning. In particular, we focus on brain-inspired emerging computing paradigms, such as approximate computing; that can further reduce the energy requirements of the system. First, we guide through an approximate computing based methodology for development of energy-efficient accelerators, specifically for convolutional Deep Neural Networks (DNNs). We show that in-depth analysis of datapaths of a DNN allows better selection of Approximate Computing modules for energy-efficient accelerators. Further, we show that a multi-objective evolutionary algorithm can be used to develop an adaptive machine learning system in hardware. At the end, we summarize the challenges and the associated research roadmap that can aid in developing energy-efficient and adaptable hardware accelerators for machine learning.

Klíčová slova


machine learning, approximate computing, deep learning, neural networks, energy efficiency

Rok
2017
Strany
627–632
Sborník
2017 IEEE Computer Society Annual Symposium on VLSI
Konference
IEEE Computer Society Annual Symposium on VLSI
ISBN
978-1-5090-6762-6
Vydavatel
IEEE Computer Society Press
Místo
Los Alamitos
DOI
EID Scopus
BibTeX
@inproceedings{BUT144454,
  author="Muhammad {Shafique} and Rehan {Hafiz} and Muhammad Usama {Javed} and Sarmad {Abbas} and Lukáš {Sekanina} and Zdeněk {Vašíček} and Vojtěch {Mrázek}",
  title="Adaptive and Energy-Efficient Architectures for Machine Learning: Challenges, Opportunities, and Research Roadmap",
  booktitle="2017 IEEE Computer Society Annual Symposium on VLSI",
  year="2017",
  pages="627--632",
  publisher="IEEE Computer Society Press",
  address="Los Alamitos",
  doi="10.1109/ISVLSI.2017.124",
  isbn="978-1-5090-6762-6",
  url="https://www.fit.vut.cz/research/publication/11474/"
}
Soubory
Projekty
Pokročilé paralelní a vestavěné počítačové systémy, VUT, Vnitřní projekty VUT, FIT-S-17-3994, zahájení: 2017-03-01, ukončení: 2020-02-29, ukončen
Výzkumné skupiny
Pracoviště
Nahoru