Detail výsledku

Towards Automatic Methods to Detect Errors in Transcriptions of Speech Recordings

YANG, J.; ONDEL YANG, L.; MANOHAR, V.; HEŘMANSKÝ, H. Towards Automatic Methods to Detect Errors in Transcriptions of Speech Recordings. In Proceedings of ICASSP. Brighton: IEEE Signal Processing Society, 2019. p. 3747-3751. ISBN: 978-1-5386-4658-8.
Typ
článek ve sborníku konference
Jazyk
anglicky
Autoři
Yang Jinyi, FIT (FIT)
ONDEL YANG, L.
MANOHAR, V.
Heřmanský Hynek, prof. Ing., Dr. Eng., UPGM (FIT)
Abstrakt

This work explores different methods to detect errors in transcriptionsof speech recordings. We artificially corrupt well transcribedspeech transcriptions with three types of errors: substitution, insertionand deletion on TIMIT phonemic transcriptions and WSJ wordtranscriptions. First, we use Bayesian model selection method bycomparing the log-likelihoods from alignment and phone recognizer,a final score is computed to make decision. In this method, weconsider two models, Bayesian Hidden Markov Model (HMM) anda Variational Auto-Encoder (VAE) combined with a HMM. Alternately,we build a biased ASR system with language models trainedon individual transcriptions, detection decision is based on Levenshteindistance (LD) between transcription and oracle path from decodedlattice. We evaluate the methods of detecting errors in corruptedTIMIT transcription, the best result (either using model selectionwith VAE model or biased ASR) achieves 7% equal errorrate on the Detection Error Tradeoff (DET) curve; we also evaluatethe methods of detecting errors in corrupted WSJ transcriptions, andthe best result (using biased ASR) achieves 3% equal error rate.

Klíčová slova

Transcription error detection, model selection,HMM-GMM, Variational Auto-Encoder, detection error tradeoff

URL
Rok
2019
Strany
3747–3751
Sborník
Proceedings of ICASSP
Konference
2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
ISBN
978-1-5386-4658-8
Vydavatel
IEEE Signal Processing Society
Místo
Brighton
DOI
UT WoS
000482554003194
EID Scopus
BibTeX
@inproceedings{BUT160007,
  author="YANG, J. and ONDEL YANG, L. and MANOHAR, V. and HEŘMANSKÝ, H.",
  title="Towards Automatic Methods to Detect Errors in Transcriptions of Speech Recordings",
  booktitle="Proceedings of ICASSP",
  year="2019",
  pages="3747--3751",
  publisher="IEEE Signal Processing Society",
  address="Brighton",
  doi="10.1109/ICASSP.2019.8683722",
  isbn="978-1-5386-4658-8",
  url="https://ieeexplore.ieee.org/document/8683722"
}
Soubory
Projekty
IT4Innovations excellence in science, MŠMT, Národní program udržitelnosti II, LQ1602, zahájení: 2016-01-01, ukončení: 2020-12-31, ukončen
Zpracování, zobrazování a analýza multimediálních a 3D dat, VUT, Vnitřní projekty VUT, FIT-S-17-3984, zahájení: 2017-03-01, ukončení: 2020-02-29, ukončen
Výzkumné skupiny
Pracoviště
Nahoru