Detail výsledku

Distributed PCFG Password Cracking

HRANICKÝ, R.; ZOBAL, L.; RYŠAVÝ, O.; KOLÁŘ, D.; MIKUŠ, D. Distributed PCFG Password Cracking. In Computer Security - ESORICS 2020. Lecture notes in Computer Science. Guildford: Springer Nature Switzerland AG, 2020. p. 701-719. ISBN: 978-3-030-58950-9.
Typ
článek ve sborníku konference
Jazyk
anglicky
Autoři
Abstrakt

In digital forensics, investigators frequently face cryptographic protection that prevents access to potentially significant evidence. Since users prefer passwords that are easy to remember, they often unwittingly follow a series of common password-creation patterns. A probabilistic context-free grammar is a mathematical model that can describe such patterns and provide a smart alternative for traditional brute-force and dictionary password guessing methods. Because more complex tasks require dividing the workload among multiple nodes, in the paper, we propose a technique for distributed cracking with probabilistic grammars.

Klíčová slova

distributed,password,cracking,forensics,grammar

URL
Rok
2020
Strany
701–719
Sborník
Computer Security - ESORICS 2020
Řada
Lecture notes in Computer Science
Konference
European Symposium on Research in Computer Security 2020
ISBN
978-3-030-58950-9
Vydavatel
Springer Nature Switzerland AG
Místo
Guildford
DOI
UT WoS
001274364800034
EID Scopus
BibTeX
@inproceedings{BUT168120,
  author="Radek {Hranický} and Lukáš {Zobal} and Ondřej {Ryšavý} and Dušan {Kolář} and Dávid {Mikuš}",
  title="Distributed PCFG Password Cracking",
  booktitle="Computer Security - ESORICS 2020",
  year="2020",
  series="Lecture notes in Computer Science",
  pages="701--719",
  publisher="Springer Nature Switzerland AG",
  address="Guildford",
  doi="10.1007/978-3-030-58951-6\{_}34",
  isbn="978-3-030-58950-9",
  url="https://link.springer.com/chapter/10.1007/978-3-030-58951-6_34"
}
Soubory
Projekty
IT4Innovations excellence in science, MŠMT, Národní program udržitelnosti II, LQ1602, zahájení: 2016-01-01, ukončení: 2020-12-31, ukončen
Pracoviště
Nahoru