Detail výsledku

Learning Document Embeddings Along With Their Uncertainties

KESIRAJU, S.; PLCHOT, O.; BURGET, L.; GANGASHETTY, S. Learning Document Embeddings Along With Their Uncertainties. IEEE-ACM Transactions on Audio Speech and Language Processing, 2020, vol. 2020, no. 28, p. 2319-2332. ISSN: 2329-9290.
Typ
článek v časopise
Jazyk
anglicky
Autoři
Kesiraju Santosh, Ph.D., UPGM (FIT)
Plchot Oldřich, Ing., Ph.D., UPGM (FIT)
Burget Lukáš, doc. Ing., Ph.D., UPGM (FIT)
Gangashetty Suryakanth V, FIT (FIT)
Abstrakt

Majority of the text modeling techniques yield onlypoint-estimates of document embeddings and lack in capturingthe uncertainty of the estimates. These uncertainties give a notionof how well the embeddings represent a document. We presentBayesian subspace multinomial model (Bayesian SMM), a generativelog-linear model that learns to represent documents in theform of Gaussian distributions, thereby encoding the uncertaintyin its covariance. Additionally, in the proposed Bayesian SMM,we address a commonly encountered problem of intractabilitythat appears during variational inference in mixed-logit models.We also present a generative Gaussian linear classifier for topicidentification that exploits the uncertainty in document embeddings.Our intrinsic evaluation using perplexity measure showsthat the proposed Bayesian SMM fits the unseen test data betteras compared to the state-of-the-art neural variational documentmodel on (Fisher) speech and (20Newsgroups) text corpora. Ourtopic identification experiments showthat the proposed systems arerobust to over-fitting on unseen test data. The topic ID results showthat the proposedmodel outperforms state-of-the-art unsupervisedtopic models and achieve comparable results to the state-of-the-artfully supervised discriminative models.

Klíčová slova

Bayesian methods, embeddings, topic identification.

URL
Rok
2020
Strany
2319–2332
Časopis
IEEE-ACM Transactions on Audio Speech and Language Processing, roč. 2020, č. 28, ISSN 2329-9290
DOI
UT WoS
000562410300004
EID Scopus
BibTeX
@article{BUT168164,
  author="Santosh {Kesiraju} and Oldřich {Plchot} and Lukáš {Burget} and Suryakanth V {Gangashetty}",
  title="Learning Document Embeddings Along With Their Uncertainties",
  journal="IEEE-ACM Transactions on Audio Speech and Language Processing",
  year="2020",
  volume="2020",
  number="28",
  pages="2319--2332",
  doi="10.1109/TASLP.2020.3012062",
  issn="2329-9290",
  url="https://ieeexplore.ieee.org/document/9149686"
}
Soubory
Projekty
IT4Innovations excellence in science, MŠMT, Národní program udržitelnosti II, LQ1602, zahájení: 2016-01-01, ukončení: 2020-12-31, ukončen
Moderní metody zpracování, analýzy a zobrazování multimediálních a 3D dat, VUT, Vnitřní projekty VUT, FIT-S-20-6460, zahájení: 2020-03-01, ukončení: 2023-02-28, ukončen
Výzkumné skupiny
Pracoviště
Nahoru