Detail výsledku

Multi-Island Finite Automata and Their Even Computations

KOLÁŘ, D.; MEDUNA, A.; TOMKO, M. Multi-Island Finite Automata and Their Even Computations. KYBERNETIKA, 2022, vol. 57, no. 5, p. 856-877. ISSN: 0023-5954.
Typ
článek v časopise
Jazyk
anglicky
Autoři
Abstrakt

This paper discusses n-island finite automata whose transition graphs can be expressed as n-member sequences of islands i1, i2, ..., in, where there is a bridge leaving ij and entering i(j+1) for each 1 <= j <= n - 1. It concentrates its attention on even computation defined as any sequence of moves during which these automata make the same number of moves in each of the islands. Under the assumption that these automata work only in an evenly computational way, the paper proves its main result stating that n-island finite automata and Rosebrugh-Wood n-parallel right-linear grammars are equivalent. Then, making use of this main result, it demonstrates that under this assumption, the language family defined by n-island finite automata is properly contained in that defined by (n+1)-island finite automata for all n >= 1. The paper also points out that this infinite hierarchy occurs between the family of regular languages and that of context-sensitive languages. Open questions are formulated in the conclusion.

Klíčová slova

finite automata, graph-based decomposition, regulated computation, infinite hierarchies of language families

URL
Rok
2022
Strany
856–877
Časopis
KYBERNETIKA, roč. 57, č. 5, ISSN 0023-5954
DOI
UT WoS
000752440900008
EID Scopus
BibTeX
@article{BUT168522,
  author="Dušan {Kolář} and Alexandr {Meduna} and Martin {Tomko}",
  title="Multi-Island Finite Automata and Their Even Computations",
  journal="KYBERNETIKA",
  year="2022",
  volume="57",
  number="5",
  pages="856--877",
  doi="10.14736/kyb-2021-5-0856",
  issn="0023-5954",
  url="https://www.kybernetika.cz/content/2021/5/856"
}
Soubory
Projekty
Metody AI pro zabezpečení kybernetického prostoru a řídicí systémy, VUT, Vnitřní projekty VUT, FIT-S-20-6293, zahájení: 2020-03-01, ukončení: 2023-02-28, ukončen
Pracoviště
Nahoru