Detail výsledku

ICTree: Automatic Perceptual Metrics for Tree Models

POLÁŠEK, T.; HRŮŠA, D.; BENEŠ, B.; ČADÍK, M. ICTree: Automatic Perceptual Metrics for Tree Models. ACM TRANSACTIONS ON GRAPHICS, 2021, vol. 40, no. 6, p. 1-15. ISSN: 0730-0301.
Typ
článek v časopise
Jazyk
anglicky
Autoři
Polášek Tomáš, Ing.
HRŮŠA, D.
Beneš Bedřich
Čadík Martin, doc. Ing., Ph.D., UPGM (FIT)
Abstrakt

Many algorithms for synthetic tree generation exist, but the visual quality of the generated models is unknown. This problem is usually solved by performing limited user studies or by side-by-side comparison. We introduce an automated system for quality assessment of the tree model based on their perception. We conducted a user study in which over one million pairs of images were compared to collect subjective perceptual scores of generated trees. The perceptual score was used to train two neural-network-based predictors. A view independent ICTreeF uses the tree models geometric features that are easy to extract from any model. The second is ICTreeI that estimates the perceived visual quality of a tree from its image. Moreover, to provide an insight into the problem, we deduce intrinsic attributes and evaluate which features make trees look like real trees. In particular, we show that branching angles, length of branches, and widths are critical for perceived realism.

Klíčová slova

Evaluation & Perception, Natural Phenomena, User Studies, Generative 3D Modeling, Perception

URL
Rok
2021
Strany
1–15
Časopis
ACM TRANSACTIONS ON GRAPHICS, roč. 40, č. 6, ISSN 0730-0301
DOI
UT WoS
000729846700035
EID Scopus
BibTeX
@article{BUT168956,
  author="POLÁŠEK, T. and HRŮŠA, D. and BENEŠ, B. and ČADÍK, M.",
  title="ICTree: Automatic Perceptual Metrics for Tree Models",
  journal="ACM TRANSACTIONS ON GRAPHICS",
  year="2021",
  volume="40",
  number="6",
  pages="1--15",
  doi="10.1145/3478513.3480519",
  issn="0730-0301",
  url="https://doi.org/10.1145/3478513.3480519"
}
Projekty
Moderní metody zpracování, analýzy a zobrazování multimediálních a 3D dat, VUT, Vnitřní projekty VUT, FIT-S-20-6460, zahájení: 2020-03-01, ukončení: 2023-02-28, ukončen
Topografická analýza obrazu s využitím metod hlubokého učení, MŠMT, INTER-EXCELLENCE - Podprogram INTER-ACTION, LTAIZ19004, zahájení: 2019-07-01, ukončení: 2022-06-30, ukončen
Výzkumné skupiny
Pracoviště
Nahoru