Detail výsledku

Radar-Based Volumetric Precipitation Nowcasting: A 3D Convolutional Neural Network with U-Net Architecture

PAVLÍK, P.; ROZINAJOVÁ, V.; BOU EZZEDDINE, A. Radar-Based Volumetric Precipitation Nowcasting: A 3D Convolutional Neural Network with U-Net Architecture. In Proceedings of the Second Workshop on Complex Data Challenges in Earth Observation (CDCEO 2022). CEUR Workshop Proceedings. Vienna: CEUR-WS.org, 2022. no. 2022, p. 65-72. ISSN: 1613-0073.
Typ
článek ve sborníku konference
Jazyk
anglicky
Autoři
Abstrakt

In recent years like in many other domains deep learning models have found their place in the domain of precipitation nowcasting. Many of these models are based on the U-Net architecture, which was originally developed for biomedical segmentation, but is also useful for the generation of short-term forecasts and therefore applicable in the weather nowcasting domain. The existing U-Net-based models use sequential radar data mapped into a 2-dimensional Cartesian grid as input and output. We propose to incorporate a third - vertical - dimension to better predict precipitation phenomena such as convective rainfall and present our results here. We compare the nowcasting performance of two comparable U-Net models trained on two-dimensional and three-dimensional radar observation data. We show that using volumetric data results in a small, but significant reduction in prediction error.

Klíčová slova

precipitation nowcasting, radar imaging, U-Net

URL
Rok
2022
Strany
65–72
Časopis
CEUR Workshop Proceedings, roč. 3207, č. 2022, ISSN 1613-0073
Sborník
Proceedings of the Second Workshop on Complex Data Challenges in Earth Observation (CDCEO 2022)
Konference
Workshop on Complex Data Challenges in Earth Observation 2022
Vydavatel
CEUR-WS.org
Místo
Vienna
EID Scopus
BibTeX
@inproceedings{BUT179604,
  author="Peter {Pavlík} and Věra {Rozinajová} and Anna {Bou Ezzeddine}",
  title="Radar-Based Volumetric Precipitation Nowcasting: A 3D Convolutional Neural Network with U-Net Architecture",
  booktitle="Proceedings of the Second Workshop on Complex Data Challenges in Earth Observation (CDCEO 2022)",
  year="2022",
  journal="CEUR Workshop Proceedings",
  volume="3207",
  number="2022",
  pages="65--72",
  publisher="CEUR-WS.org",
  address="Vienna",
  issn="1613-0073",
  url="http://ceur-ws.org/Vol-3207/paper10.pdf"
}
Soubory
Pracoviště
Nahoru