Detail výsledku

Predicting Photovoltaic Power Production using High-Uncertainty Weather Forecasts

POLÁŠEK, T.; ČADÍK, M. Predicting Photovoltaic Power Production using High-Uncertainty Weather Forecasts. APPLIED ENERGY, 2023, vol. 2023, no. 339, p. 120989-121004. ISSN: 0306-2619.
Typ
článek v časopise
Jazyk
anglicky
Autoři
Abstrakt

A growing interest in renewable power increases its impact on the energy grid, posing significant challenges to reliability, stability, and planning. Although the use of weather-based prediction methods helps relieve these issues, their real-world accuracy is limited by the errors inherent to the weather forecast data used during the inference. To help resolve this limitation, we introduce the SolarPredictor model. It uses a hybrid convolutional architecture combining residual connections with multi-scale spatiotemporal analysis, predicting solar power from publicly available high-uncertainty weather forecasts. Further, to train the model, we present the SolarDB dataset comprising one year of power production data for 16 solar power plants. Crucially, we include weather forecasts with seven days of hourly history, allowing our model to anticipate errors in the meteorological features. In contrast to previous work, we evaluate the prediction accuracy using widely available low-precision weather forecasts, accurately reflecting the real-world performance. Comparing against 17 other techniques, we show the superior performance of our approach, reaching an average RRMSE of 6.15 for 1-day, 8.54 for 3-day, and 8.89 for 7-day predictions on the SolarDB dataset. Finally, we analyze the effects of weather forecast uncertainty on the prediction accuracy, showing a 23 % performance gap compared to using zero-error weather. Data and additional resources are available at cphoto.fit.vutbr.cz/solar.

Klíčová slova

solar power forecasting, photovoltaic dataset, prediction uncertainty, machine learning model

URL
Rok
2023
Strany
120989–121004
Časopis
APPLIED ENERGY, roč. 2023, č. 339, ISSN 0306-2619
Vydavatel
Elsevier
Místo
Oxford
DOI
UT WoS
000965062000001
EID Scopus
BibTeX
@article{BUT185047,
  author="Tomáš {Polášek} and Martin {Čadík}",
  title="Predicting Photovoltaic Power Production using High-Uncertainty Weather Forecasts",
  journal="APPLIED ENERGY",
  year="2023",
  volume="2023",
  number="339",
  pages="120989--121004",
  doi="10.1016/j.apenergy.2023.120989",
  issn="0306-2619",
  url="https://www.sciencedirect.com/science/article/pii/S0306261923003537"
}
Projekty
Soudobé metody zpracování, analýzy a zobrazování multimediálních a 3D dat, VUT, Vnitřní projekty VUT, FIT-S-23-8278, zahájení: 2023-03-01, ukončení: 2026-02-28, řešení
Výzkumné skupiny
Pracoviště
Nahoru