Detail výsledku

Vision UFormer: Long-Range Monocular Absolute Depth Estimation

POLÁŠEK, T.; ČADÍK, M.; KELLER, Y.; BENEŠ, B. Vision UFormer: Long-Range Monocular Absolute Depth Estimation. COMPUTERS & GRAPHICS-UK, 2023, vol. 111, no. 4, p. 180-189. ISSN: 0097-8493.
Typ
článek v časopise
Jazyk
anglicky
Autoři
Polášek Tomáš, Ing.
Čadík Martin, doc. Ing., Ph.D., UPGM (FIT)
Keller Yosi, prof., M.Sc., Ph.D.
Beneš Bedřich
Abstrakt

We introduce Vision UFormer (ViUT), a novel deep neural long-range monocular depth estimator. The input is an RGB image, and the output is an image that stores the absolute distance of the object in the scene as its per-pixel values. ViUT consists of a Transformer encoder and a ResNet decoder combined with UNet style of skip connections. It is trained on 1M images across ten datasets in a staged regime that starts with easier-to-predict data such as indoor photographs and continues to more complex long-range outdoor scenes. We show that ViUT provides comparable results for normalized relative distances and short-range classical datasets such as NYUv2 and KITTI. We further show that it successfully estimates of absolute long-range depth in meters. We validate ViUT on a wide variety of long-range scenes showing its high estimation capabilities with a relative improvement of up to 23%. Absolute depth estimation finds application in many areas, and we show its usability in image composition, range annotation, defocus, and scene reconstruction.

Klíčová slova

Absolute Depth Estimation, Monocular Depth Prediction, Long Range Distance, Transformer, UNet, Staged Training

URL
Rok
2023
Strany
180–189
Časopis
COMPUTERS & GRAPHICS-UK, roč. 111, č. 4, ISSN 0097-8493
Vydavatel
Elsevier
Místo
Oxford
DOI
UT WoS
000954860700001
EID Scopus
BibTeX
@article{BUT185048,
  author="Tomáš {Polášek} and Martin {Čadík} and Yosi {Keller} and Bedřich {Beneš}",
  title="Vision UFormer: Long-Range Monocular Absolute Depth Estimation",
  journal="COMPUTERS & GRAPHICS-UK",
  year="2023",
  volume="111",
  number="4",
  pages="180--189",
  doi="10.1016/j.cag.2023.02.003",
  issn="0097-8493",
  url="https://www.sciencedirect.com/science/article/pii/S0097849323000262"
}
Projekty
Soudobé metody zpracování, analýzy a zobrazování multimediálních a 3D dat, VUT, Vnitřní projekty VUT, FIT-S-23-8278, zahájení: 2023-03-01, ukončení: 2026-02-28, řešení
Topografická analýza obrazu s využitím metod hlubokého učení, MŠMT, INTER-EXCELLENCE - Podprogram INTER-ACTION, LTAIZ19004, zahájení: 2019-07-01, ukončení: 2022-06-30, ukončen
Výzkumné skupiny
Pracoviště
Nahoru