Detail výsledku

IDIAPers @ Causal News Corpus 2022: Extracting Cause-Effect-Signal Triplets via Pre-trained Autoregressive Language Model

FAJČÍK, M.; SMRŽ, P.; MOTLÍČEK, P.; BURDISSO, S. IDIAPers @ Causal News Corpus 2022: Extracting Cause-Effect-Signal Triplets via Pre-trained Autoregressive Language Model. In Proceedings of the 5th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text (CASE 2022). Abu Dhabi: Association for Computational Linguistics, 2022. p. 70-78. ISBN: 978-1-959429-05-0.
Typ
článek ve sborníku konference
Jazyk
anglicky
Autoři
Abstrakt

In this paper, we describe our shared task submissions for Subtask 2 in
CASE-2022, Event Causality Identification with Casual News Corpus. The
challenge focused on the automatic detection of all cause-effect-signal spans
present in the sentence from news-media. We detect cause-effect-signal spans in
a sentence using T5 --- a pre-trained autoregressive language model. We
iteratively identify all cause-effect-signal span triplets, always conditioning
the prediction of the next triplet on the previously predicted ones. To predict
the triplet itself, we consider different causal relationships such as
cause->effect->signal. Each triplet component is
generated via a language model conditioned on the sentence, the previous parts
of the current triplet, and previously predicted triplets. Despite training on
an extremely small dataset of 160 samples, our approach achieved competitive
performance, being placed second in the competition. Furthermore, we show that
assuming either cause->effect or effect->cause order
achieves similar results.

Klíčová slova

causal event extraction, causal event, cause, effect, signal, newsmedia

URL
Rok
2022
Strany
70–78
Sborník
Proceedings of the 5th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text (CASE 2022)
Konference
Conference on Empirical Methods in Natural Language Processing
ISBN
978-1-959429-05-0
Vydavatel
Association for Computational Linguistics
Místo
Abu Dhabi
DOI
EID Scopus
BibTeX
@inproceedings{BUT185126,
  author="Martin {Fajčík} and Pavel {Smrž} and Petr {Motlíček} and Sergio {Burdisso}",
  title="IDIAPers @ Causal News Corpus 2022: Extracting Cause-Effect-Signal Triplets via Pre-trained Autoregressive Language Model",
  booktitle="Proceedings of the 5th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text (CASE 2022)",
  year="2022",
  pages="70--78",
  publisher="Association for Computational Linguistics",
  address="Abu Dhabi",
  doi="10.18653/v1/2022.case-1.10",
  isbn="978-1-959429-05-0",
  url="https://aclanthology.org/2022.case-1.10/"
}
Soubory
Projekty
Řízení peristaltického čerpadla s využitím kombinace neuronových sítí, experimentálních měření a numerických simulací, VUT, Vnitřní projekty VUT, FIT/FSI-J-22-7952, zahájení: 2022-03-01, ukončení: 2023-02-28, ukončen
Výzkumné skupiny
Pracoviště
Nahoru