Detail výsledku

IDIAPers @ Causal News Corpus 2022: Efficient Causal Relation Identification Through a Prompt-based Few-shot Approach

BURDISSO, S.; FAJČÍK, M.; SMRŽ, P.; MOTLÍČEK, P. IDIAPers @ Causal News Corpus 2022: Efficient Causal Relation Identification Through a Prompt-based Few-shot Approach. In Proceedings of the 5th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text (CASE 2022). Abu Dhabi: Association for Computational Linguistics, 2022. p. 61-69. ISBN: 978-1-959429-05-0.
Typ
článek ve sborníku konference
Jazyk
anglicky
Autoři
Abstrakt

In this paper, we describe our participation in the subtask 1 of CASE-2022,
Event Causality Identification with Casual News Corpus. We address the Causal
Relation Identification (CRI) task by exploiting a set of simple yet
complementary techniques for fine-tuning language models (LMs) on a small
number of annotated examples (i.e., a few-shot configuration). We follow a
prompt-based prediction approach for fine-tuning LMs in which the CRI task is
treated as a masked language modeling problem (MLM). This approach allows LMs
natively pre-trained on MLM problems to directly generate textual responses to
CRI-specific prompts. We compare the performance of this method against
ensemble techniques trained on the entire dataset. Our best-performing
submission was fine-tuned with only 256 instances per class, 15.7% of the all
available data, and yet obtained the second-best precision (0.82), third-best
accuracy (0.82), and an F1-score (0.85) very close to what was reported by the
winner team (0.86).

Klíčová slova

few-shot learning, classifier, causal relation identification, causal event identification, ensembling

URL
Rok
2022
Strany
61–69
Sborník
Proceedings of the 5th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text (CASE 2022)
Konference
Conference on Empirical Methods in Natural Language Processing
ISBN
978-1-959429-05-0
Vydavatel
Association for Computational Linguistics
Místo
Abu Dhabi
DOI
EID Scopus
BibTeX
@inproceedings{BUT185127,
  author="Sergio {Burdisso} and Martin {Fajčík} and Pavel {Smrž} and Petr {Motlíček}",
  title="IDIAPers @ Causal News Corpus 2022: Efficient Causal Relation Identification Through a Prompt-based Few-shot Approach",
  booktitle="Proceedings of the 5th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text (CASE 2022)",
  year="2022",
  pages="61--69",
  publisher="Association for Computational Linguistics",
  address="Abu Dhabi",
  doi="10.18653/v1/2022.case-1.9",
  isbn="978-1-959429-05-0",
  url="https://aclanthology.org/2022.case-1.9/"
}
Soubory
Projekty
Řízení peristaltického čerpadla s využitím kombinace neuronových sítí, experimentálních měření a numerických simulací, VUT, Vnitřní projekty VUT, FIT/FSI-J-22-7952, zahájení: 2022-03-01, ukončení: 2023-02-28, ukončen
Výzkumné skupiny
Pracoviště
Nahoru