Detail výsledku

Reinforced Labels: Multi-Agent Deep Reinforcement Learning for Point-Feature Label Placement

BOBÁK, P.; ČMOLÍK, L.; ČADÍK, M. Reinforced Labels: Multi-Agent Deep Reinforcement Learning for Point-Feature Label Placement. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2024, vol. 30, no. 9, p. 5908-5922. ISSN: 1077-2626.
Typ
článek v časopise
Jazyk
anglicky
Autoři
Bobák Petr, Ing., Ph.D., UPGM (FIT)
ČMOLÍK, L.
Čadík Martin, doc. Ing., Ph.D., UPGM (FIT)
Abstrakt

Over the recent years, Reinforcement Learning combined with Deep Learning techniques has successfully proven to solve
complex problems in various domains, including robotics, self-driving cars, and finance. In this paper, we are introducing Reinforcement Learning (RL) to label placement, a complex task in data visualization that seeks optimal positioning for labels to avoid overlap and ensure legibility. Our novel point-feature label placement method utilizes Multi-Agent Deep Reinforcement Learning to learn the label placement strategy, the first machine-learning-driven labeling method, in contrast to the existing hand-crafted algorithms designed by human experts. To facilitate RL learning, we developed an environment where an agent acts as a proxy for a label, a short textual annotation that augments visualization. Our results show that the strategy trained by our method significantly outperforms the random strategy of an
untrained agent and the compared methods designed by human experts in terms of completeness (i.e., the number of placed labels). The trade-off is increased computation time, making the proposed method slower than the compared methods. Nevertheless, our method is ideal for scenarios where the labeling can be computed in advance, and completeness is essential, such as cartographic maps, technical drawings, and medical atlases. Additionally, we conducted a user study to assess the perceived performance. The outcomes revealed that the participants considered the proposed method to be significantly better than the other examined methods. This indicates that the improved completeness is not just reflected in the quantitative metrics but also in the subjective evaluation by the participants.

Klíčová slova

Point-Feature Label Placement, Machine Learning, Multi-Agent Reinforcement Learning

URL
Rok
2024
Strany
5908–5922
Časopis
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, roč. 30, č. 9, ISSN 1077-2626
Vydavatel
IEEE Computer Society
DOI
UT WoS
001283711000014
EID Scopus
BibTeX
@article{BUT185209,
  author="BOBÁK, P. and ČMOLÍK, L. and ČADÍK, M.",
  title="Reinforced Labels: Multi-Agent Deep Reinforcement Learning for Point-Feature Label Placement",
  journal="IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS",
  year="2024",
  volume="30",
  number="9",
  pages="5908--5922",
  doi="10.1109/TVCG.2023.3313729",
  issn="1077-2626",
  url="http://cphoto.fit.vutbr.cz/reinforced-labels/"
}
Projekty
Soudobé metody zpracování, analýzy a zobrazování multimediálních a 3D dat, VUT, Vnitřní projekty VUT, FIT-S-23-8278, zahájení: 2023-03-01, ukončení: 2026-02-28, řešení
Topografická analýza obrazu s využitím metod hlubokého učení, MŠMT, INTER-EXCELLENCE - Podprogram INTER-ACTION, LTAIZ19004, zahájení: 2019-07-01, ukončení: 2022-06-30, ukončen
Výzkumné skupiny
Pracoviště
Nahoru