Detail výsledku

Plankton Recognition in Images with Varying Size

BUREŠ, J.; EEROLA, T.; LENSU, L.; KÄLVIÄINEN, H.; ZEMČÍK, P. Plankton Recognition in Images with Varying Size. Lecture Notes in Computer Science, 2021, vol. 12666, no. 2, p. 110-120. ISSN: 0302-9743.
Typ
článek v časopise
Jazyk
anglicky
Autoři
Bureš Jaroslav, Ing.
Eerola Tuomas, Prof., FIT (FIT)
Lensu Lasse, FIT (FIT)
Kälviäinen Heikki, FIT (FIT)
Zemčík Pavel, prof. Dr. Ing., dr. h. c., UPGM (FIT)
Abstrakt

Monitoring plankton is important as they are an essential part of the aquatic food web as well as producers of oxygen. Modern imaging devices produce a massive amount of plankton image data which calls for automatic solutions. These images are characterized by a very large variation in both the size and the aspect ratio. Convolutional neural network (CNN) based classification methods, on the other hand, typically require a fixed size input. Simple scaling of the images into a common size contains several drawbacks. First, the information about the size of the plankton is lost. For human experts, the size information is one of the most important cues for identifying the species. Second, downscaling the images leads to the loss of fine details such as flagella essential for species recognition. Third, upscaling the images increases the size of the network. In this work, extensive experiments on various approaches to address the varying image dimensions are carried out on a challenging phytoplankton image dataset. A novel combination of methods is proposed, showing improvement over the baseline CNN.

Klíčová slova

plankton monitoring, mechine learning with varying size images, convlutional neural networks CNN

URL
Rok
2021
Strany
110–120
Časopis
Lecture Notes in Computer Science, roč. 12666, č. 2, ISSN 0302-9743
DOI
EID Scopus
BibTeX
@article{BUT187364,
  author="Jaroslav {Bureš} and Tuomas {Eerola} and Lasse {Lensu} and Heikki {Kälviäinen} and Pavel {Zemčík}",
  title="Plankton Recognition in Images with Varying Size",
  journal="Lecture Notes in Computer Science",
  year="2021",
  volume="12666",
  number="2",
  pages="110--120",
  doi="10.1007/978-3-030-68780-9\{_}11",
  issn="0302-9743",
  url="https://link.springer.com/chapter/10.1007%2F978-3-030-68780-9_11"
}
Projekty
Moderní metody zpracování, analýzy a zobrazování multimediálních a 3D dat, VUT, Vnitřní projekty VUT, FIT-S-20-6460, zahájení: 2020-03-01, ukončení: 2023-02-28, ukončen
Výzkumné skupiny
Pracoviště
Nahoru