Detail výsledku

Energy Complexity of Convolutional Neural Networks

ŠÍMA, J.; VIDNEROVÁ, P.; MRÁZEK, V. Energy Complexity of Convolutional Neural Networks. NEURAL COMPUTATION, 2024, vol. 36, no. 8, p. 1601-1625. ISSN: 0899-7667.
Typ
článek v časopise
Jazyk
anglicky
Autoři
Šíma Jiří, doc. RNDr., DrSc., FIT (FIT)
VIDNEROVÁ, P.
Mrázek Vojtěch, Ing., Ph.D., UPSY (FIT)
Abstrakt

The energy efficiency of hardware implementations of convolutional neural networks (CNNs) is critical to their widespread deployment in low-power mobile devices. Recently, a number of methods have been proposed for providing energy-optimal mappings of CNNs onto diverse hardware accelerators. Their estimated energy consumption is related to specific implementation details and hardware parameters, which does not allow for machine-independent exploration of CNN energy measures. In this letter, we introduce a simplified theoretical energy complexity model for CNNs, based on only a two-level memory hierarchy that captures asymptotically all important sources of energy consumption for different CNN hardware implementations. In this model, we derive a simple energy lower bound and calculate the energy complexity of evaluating a CNN layer for two common data flows, providing corresponding upper bounds. According to statistical tests, the theoretical energy upper and lower bounds we present fit asymptotically very well with the real energy consumption of CNN implementations on the Simba and Eyeriss hardware platforms, estimated by the Timeloop/Accelergy program, which validates the proposed energy complexity model for CNNs.

Klíčová slova

energy complexity, upper bound, lower bound, convolutional neural networks

URL
Rok
2024
Strany
1601–1625
Časopis
NEURAL COMPUTATION, roč. 36, č. 8, ISSN 0899-7667
Vydavatel
MIT PRESS
Místo
CAMBRIDGE
DOI
UT WoS
001272123000003
EID Scopus
BibTeX
@article{BUT189311,
  author="ŠÍMA, J. and VIDNEROVÁ, P. and MRÁZEK, V.",
  title="Energy Complexity of Convolutional Neural Networks",
  journal="NEURAL COMPUTATION",
  year="2024",
  volume="36",
  number="8",
  pages="1601--1625",
  doi="10.1162/neco\{_}a\{_}01676",
  issn="0899-7667",
  url="https://direct.mit.edu/neco/article-abstract/36/8/1601/121120/Energy-Complexity-of-Convolutional-Neural-Networks?redirectedFrom=fulltext"
}
Projekty
AppNeCo: Aproximativní neurovýpočty, GAČR, Standardní projekty, GA22-02067S, zahájení: 2022-01-01, ukončení: 2024-12-31, ukončen
Výzkumné skupiny
Pracoviště
Nahoru