Detail výsledku

Multi-Objective Evolutionary Design of Explainable EEG Classifier

HURTA, M.; OVESNÁ, A.; MRÁZEK, V.; SEKANINA, L. Multi-Objective Evolutionary Design of Explainable EEG Classifier. Genetic Programming, 28th European Conference, EuroGP 2025. Lecture Notes in Computer Science. Terst: Springer Nature Switzerland AG, 2025. p. 52-67. ISBN: 978-3-031-89990-4.
Typ
článek ve sborníku konference
Jazyk
anglicky
Autoři
Hurta Martin, Ing., UPSY (FIT)
Ovesná Anna, Ing.
Mrázek Vojtěch, Ing., Ph.D., UPSY (FIT)
Sekanina Lukáš, prof. Ing., Ph.D., UPSY (FIT)
Abstrakt

Deep neural networks (DNNs) have achieved impressive results in many fields.
However, the use of black-box solutions based on DNNs in medical applications
poses challenges, as understanding the rationale behind decisions is crucial for
application in healthcare. For those reasons, we propose a new method for the
evolutionary multi-objective design (MOD) of small and potentially explainable
EEG (Electroencephalography) signal classifiers. We evaluate a combination of
genetic algorithm (GA) for feature selection with multiple algorithms for the
automated design of the classifier, including Support Vector Machine, k-Nearest
Neighbors, and Naive Bayes. To further improve the classification quality and
obtain less complex solutions, we compare three different MOD scenarios targeting
the accuracy, specificity, sensitivity, and the number of used features. In
addition, we evaluate the use of Cartesian Genetic Programming (CGP) as a way to
achieve smaller and more interpretable solutions and combine it with the
compositional co-evolution of selected features to improve computational
requirements and find solutions in a reasonable time. The proposed methods are
experimentally evaluated on tasks of alcohol use disorder and major depressive
disorder classification. Experimental results show that newly proposed MOD
scenarios lead to significantly better trade-offs between the accuracy and the
number of features compared to the state-of-the-art method employing the NSGA-II
algorithm. The proposed co-evolution of features (evolved by GA) and classifier
(evolved by CGP) allowed the design of small and potentially explainable
solutions and led to 20-100 times faster convergence than the baseline CGP-based
approach.

Klíčová slova

Multi-objective design, Classification, Explainability, Co-evolution, Genetic
algorithm, Cartesian genetic programming, EEG

URL
Rok
2025
Strany
52–67
Sborník
Genetic Programming, 28th European Conference, EuroGP 2025
Řada
Lecture Notes in Computer Science
Svazek
15609
Konference
28th European Conference on Genetic Programming
ISBN
978-3-031-89990-4
Vydavatel
Springer Nature Switzerland AG
Místo
Terst
DOI
EID Scopus
BibTeX
@inproceedings{BUT193309,
  author="Martin {Hurta} and Anna {Ovesná} and Vojtěch {Mrázek} and Lukáš {Sekanina}",
  title="Multi-Objective Evolutionary Design of Explainable EEG Classifier",
  booktitle="Genetic Programming, 28th European Conference, EuroGP 2025",
  year="2025",
  series="Lecture Notes in Computer Science",
  volume="15609",
  pages="52--67",
  publisher="Springer Nature Switzerland AG",
  address="Terst",
  doi="10.1007/978-3-031-89991-1\{_}4",
  isbn="978-3-031-89990-4",
  url="https://link.springer.com/chapter/10.1007/978-3-031-89991-1_4"
}
Projekty
Strojové učení zohledňující hardware: Od automatizovaného návrhu k inovativním a vysvětlitelným řešením, GAČR, Standardní projekty, GA24-10990S, zahájení: 2024-01-01, ukončení: 2026-12-31, řešení
Výzkumné skupiny
Pracoviště
Nahoru