Detail výsledku

DEMIS: Electron Microscopy Image Stitching using Deep Learning Features and Global Optimisation

ŠILLING, P.; ŠPANĚL, M. DEMIS: Electron Microscopy Image Stitching using Deep Learning Features and Global Optimisation. Proceedings of the 18th International Joint Conference on Biomedical Engineering Systems and Technologies - BIOIMAGING. Porto: Institute for Systems and Technologies of Information, Control and Communication, 2025. p. 255-256. ISBN: 978-989-758-731-3.
Typ
článek ve sborníku konference
Jazyk
anglicky
Autoři
Abstrakt

Accurate stitching of overlapping image tiles is essential for reconstructing
large-scale Electron Microscopy (EM) images during Whole Slide Imaging. Current
stitching approaches rely on handcrafted features and translation-only global
alignment based on Minimum Spanning Tree (MST) construction. This results in
suboptimal global alignment since it neglects rotational errors and works only
with transformations estimated from pairwise feature matches, discarding valuable
information tied to individual features. Moreover, handcrafted features may have
trouble with repetitive textures. Motivated by the limitations of current methods
and recent advancements in deep learning, we propose DEMIS, a novel EM image
stitching method. DEMIS uses Local Feature TRansformer (LoFTR) for image
matching, and optimises translational and rotational parameters directly at the
level of individual features. For evaluation and training, we create EM424,
a synthetic dataset generated by splitting high-resolution EM images into arrays
of overlapping image tiles. Furthermore, to enable evaluation on unannotated
real-world data, we design a no-reference stitching quality metric based on
optical flow. Experiments that use the new metric show that DEMIS can improve the
average results from 32.11 to 2.28 compared to current stitching techniques (a
1408% improvement).

Klíčová slova

Electron Microscopy, Whole Slide Imaging, Image Stitching, Neural Networks

URL
Rok
2025
Strany
255–256
Sborník
Proceedings of the 18th International Joint Conference on Biomedical Engineering Systems and Technologies - BIOIMAGING
Konference
12th International Conference on Bioimaging, BIOIMAGING 2025 - Part of 18th International Joint Conference on Biomedical Engineering Systems and Technologies, BIOSTEC 2025
ISBN
978-989-758-731-3
Vydavatel
Institute for Systems and Technologies of Information, Control and Communication
Místo
Porto
DOI
BibTeX
@inproceedings{BUT193985,
  author="Petr {Šilling} and Michal {Španěl}",
  title="DEMIS: Electron Microscopy Image Stitching using Deep Learning Features and Global Optimisation",
  booktitle="Proceedings of the 18th International Joint Conference on Biomedical Engineering Systems and Technologies - BIOIMAGING",
  year="2025",
  pages="255--256",
  publisher="Institute for Systems and Technologies of Information, Control and Communication",
  address="Porto",
  doi="10.5220/0013314900003911",
  isbn="978-989-758-731-3",
  url="https://www.scitepress.org/publishedPapers/2025/133149/pdf/index.html"
}
Projekty
Soudobé metody zpracování, analýzy a zobrazování multimediálních a 3D dat, VUT, Vnitřní projekty VUT, FIT-S-23-8278, zahájení: 2023-03-01, ukončení: 2026-02-28, řešení
TESCAN 3DIM - Nové trendy v analýze obrazových a 3D dat, TESCAN 3DIM, zahájení: 2025-02-01, ukončení: 2025-08-31, řešení
Výzkumné skupiny
Pracoviště
Nahoru