Detail výsledku

TinyverseGP: Towards a Modular Cross-domain Benchmarking Framework for Genetic Programming

KALKREUTH, R.; DE, O.; JANKOVIC, A.; ANASTACIO, M.; DIERKES, J.; VAŠÍČEK, Z.; HOOS, H. TinyverseGP: Towards a Modular Cross-domain Benchmarking Framework for Genetic Programming. Proceedings of the Genetic and Evolutionary Computation Conference Companion. Malaga: Association for Computing Machinery, 2025. p. 2172-2176. ISBN: 979-8-4007-1464-1.
Typ
článek ve sborníku konference
Jazyk
anglicky
Autoři
Kalkreuth Roman, M.Sc., Ph.D., FIT (FIT)
DE, O.
JANKOVIC, A.
ANASTACIO, M.
DIERKES, J.
Vašíček Zdeněk, doc. Ing., Ph.D., UPSY (FIT)
HOOS, H.
Abstrakt

Over the years, genetic programming (GP) has evolved, with many proposed
variations, especially in how they represent a solution. Being essentially
a program synthesis algorithm, it is capable of tackling multiple problem
domains. Current benchmarking initiatives are fragmented, as the different
representations are not compared with each other and their performance is not
measured across the different domains. In this work, we propose a unified
framework, dubbed TinyverseGP (inspired by tinyGP), which provides support to
multiple representations and problem domains, including symbolic regression,
logic synthesis and policy search.

Klíčová slova

Genetic Programming, Implementation, Benchmarking, Symbolic Regression, Logic
Synthesis, Python

Rok
2025
Strany
2172–2176
Sborník
Proceedings of the Genetic and Evolutionary Computation Conference Companion
Konference
Genetic and Evolutionary Computation Conference 2025 (Companion)
ISBN
979-8-4007-1464-1
Vydavatel
Association for Computing Machinery
Místo
Malaga
DOI
BibTeX
@inproceedings{BUT197539,
  author="KALKREUTH, R. and DE, O. and JANKOVIC, A. and ANASTACIO, M. and DIERKES, J. and VAŠÍČEK, Z. and HOOS, H.",
  title="TinyverseGP: Towards a Modular Cross-domain Benchmarking Framework for Genetic Programming",
  booktitle="Proceedings of the Genetic and Evolutionary Computation Conference Companion",
  year="2025",
  pages="2172--2176",
  publisher="Association for Computing Machinery",
  address="Malaga",
  doi="10.1145/3712255.3726697",
  isbn="979-8-4007-1464-1"
}
Projekty
LEDNeCo: Low Energy Deep Neurocomputing, GAČR, Standardní projekty, GA25-15490S, zahájení: 2025-01-01, ukončení: 2027-12-31, řešení
Výzkumné skupiny
Pracoviště
Nahoru