Detail předmětu
Matematika 2
BPC-MA2A FEKT BPC-MA2A Ak. rok 2023/2024 letní semestr 6 kreditů
Diferenciální počet funkcí více proměnných, definiční obor, limita, spojitost, parciální a směrové derivace, gradient, diferenciál, tečná rovina, funkce zadaná implicitně. Obyčejné diferenciální rovnice, existence a jednoznačnost řešení, rovnice prvního řádu se separovanými proměnnými a lineární rovnice prvního řádu, rovnice n-tého řádu s konstantními koeficienty. Analýza v komplexním oboru, holomorfní funkce, derivace, parametrizace křivky, křivkový integrál, Cauchyova věta, Cauchyův vzorec, Laurentova řada, singulární body, rezidua, reziduová věta. Laplaceova transformace, přímá a zpětná, řešení diferenciální rovnice s počátečními podmínkami. Signály a impulsy, speciální a zobecněné funkce, Laplaceovy obrazy signálů s konečnými impulsy. Fourierovy řady periodických funkcí, ortogonální systém funkcí, trigonometrický systém funkcí, Fourierova řada v komplexním tvaru. Fourierova transformace, přímá a zpětná, Fourierovy obrazy speciálních funkcí. Z-transformace, přímá a zpětná, řešení diferenční rovnice s počátečními podmínkami.
Garant předmětu
Koordinátor předmětu
Jazyk výuky
Zakončení
Rozsah
- 39 hod. přednášky
- 26 hod. cvičení
Zajišťuje ústav
Přednášející
Cvičící
Cíle předmětu
Cílem předmětu je seznámit studenty se základy diferenciálního počtu funkcí více proměnných a s některými obecnými metodami řešení obyčejných diferenciálních rovnic. Dalším cílem je naučit studenty vhodně používat známe matematické transformace (Laplaceovou, Fourierovou a Z-transformaci) a tím jim dát návod k alternatívnímu způsobu řešení diferenciálních a diferenčních rovnic hojně využívaného právě v technických oborech. Osvojením si základů komplexní analýzy (zejména základních metod integrace v komplexním oboru) získá student dobrý nástroj při řešení některých konkrétních úloh v elektrotechnice. Studenti by po absolvování předmětu měli znát základní pojmy a odpovídající souvislosti, dále pak:
- umět najít a znázornit definiční obor funkce dvou proměnných;
- spočítat parciální derivace libovolného řádu u libovolné (i implicitně zadané) funkce více proměnných;
- najít tečnou rovinu k ploše zadané pomocí funkce dvou proměnných;
- řešit separované a lineární diferenciální rovnice prvního řádu;
- vyřešit klasickým způsobem diferenciální rovnici n-tého řádu s konstantními koeficienty včetně speciální pravé strany;
- rozložit komplexní funkci na reálnou a imaginární složku a určit funkční hodnoty komplexních funkcí;
- najít druhou složku komplexní holomorfní funkce a určit tuto funkci v komplexní proměnné včetně její derivace;
- spočítat integrál z komplexní funkce přes křivku pomocí parametrizace křivky, Cauchyho věty nebo Cauchyho vzorce;
- umět najít singulární body komplexní funkce a spočítat jejich rezidua;
- spočítat integrál z komplexní funkce pomocí reziduové věty;
- vyřešit pomocí Laplaceovy transformace diferenciální rovnici n-tého řádu s konstantními koeficienty;
- najít Fourierovu řadu periodické funkce;
- vyřešit pomocí Z-transformace diferenční rovnici n-tého řádu s konstantními koeficienty
Požadované prerekvizitní znalosti a dovednosti
Jsou požadovány znalosti na úrovni středoškolského studia a předmětu Matematika 1. K dobrému zvládnutí látky předmětu je zapotřebí umět určovat definiční obory běžných funkcí jedné proměnné, pochopení pojmu limity funkce jedné proměnné, číselné posloupnosti a její limity a řešit konkrétní standardní úlohy. Dále je nutná znalost pravidel pro derivování reálných funkcí jedné proměnné, znalost základních postupů a metod integrování (rozklad na parciální zlomky, integrace per partes, metoda substituce) u neurčitého i určitého integrálu a tyto umět aplikovat na úlohy v rozsahu skript předmětu Matematika 1. Rovněž je požadována znalost nekonečných číselných řad a základních kriterií jejich konvergence, tak i mocninných řad a hledání oborů jejich konvergence.
Literatura referenční
- Svoboda, Z., Vítovec, J.: Matematika 2, FEKT VUT v Brně, 2014, s. 1-189.
- Kolářová, E.: Matematika 2, Sbírka úloh, FEKT VUT v Brně, 2009, s. 1-83.
Osnova přednášek
1. Diferenciální počet funkcí více proměnných. Definiční obor, limita, spojitost, parciální a směrové derivace, gradient, diferenciál, tečná rovina, funkce zadaná implicitně.
2. Obyčejné diferenciální rovnice prvního řádu. Základní pojmy, existence a jednoznačnost řešení, geometrická interpretace rovnice, rovnice se separovanými proměnnými a lineární rovnice.
3. Obyčejné diferenciální rovnice n-tého řádu. Základní pojmy, lineární diferenciální rovnice n-tého řádu s konstantními koeficienty včetně speciální pravé strany.
4. Úvod do komplexní analýzy. Komplexní čísla a základní operace v komplexním oboru, důležité množiny komplexní roviny.
5. Komplexní funkce, její limita, spojitost a derivace. Speciální případy komplexních funkcí, algebraický rozklad funkce, elementární komplexní funkce, holomorfní funkce, Cauchy-Riemanovy podmínky, L'Hospitalovo pravidlo.
6. Integrální počet v komplexním oboru - I. část. Křivka v komplexní rovině, parametrizace známých křivek, integrál komplexní funkce po křivce, výpočet integrálu po křivce parametrizací křivky.
7. Integrální počet v komplexním oboru - II. část. Výpočet integrálu pomocí Cauchyho věty a Cauchyho vzorců.
8. Integrální počet v komplexním oboru - III. část. Laurentova řada, singulární body a jejich klasifikace, pojem rezidua a výpočet integrálu pomocí reziduové věty.
9. Přímá a zpětná Laplaceova transformace. Vlastnosti transformace, využití Laplaceovy transformace při řešení diferenciálních rovnic.
10. Signály a impulsy, speciální a zobecněné funkce. Konečné a Diracovy impulsy, Heavisideova funkce, jehlová funkce, zobecněná derivace, hledání Laplaceovvých obrazů jednoduchých signálů s konečnými impulsy.
11. Fourierovy řady periodických funkcí. Periodické funkce, nekonečný ortogonální systém funkcí, Fourierovy řady pro funkce se speciální i obecnou periodou, Fourierovy řady v komplexním tvaru.
12. Přímá a zpětná Fourierova transformace. Vlastnosti transformace, hledání Fourierových obrazů některých speciálních funkcí (signálů), využití Fourierovy transformace při řešení diferenciálních rovnic.
13. Přímá a zpětná Z-transformace. Vlastnosti transformace, diferenční rovnice a využití Z-transformace při řešení diferenčních rovnic.
Osnova numerických cvičení
Kopíruje osnovu cvičení odborného základu (tj. numerických cvičení).
Průběžná kontrola studia
Maximum 30 bodů za semestr za tři písemné testy. Podmínkou udělení zápočtu je zisk alespoň 10 bodů v součtu z těchto tří písemných testů.
Podmínkou udělení zkoušky je zisk alespoň 50 bodů z celkových 100 možných (30 lze získat za práci v semestru, 70 lze získat u závěrečné písemné zkoušky).
Cvičení odborného základu (tj. numerická cvičení) a cvičení s počítačovou podporou jsou povinná. Každou neúčast je nutné řádně omluvit a probranou látku dostudovat. Během semestru se píší tři písemné testy o celkovém počtu 30 bodů. Podmínkou udělení zápočtu je zisk alespoň 10 bodů v součtu z těchto tří písemných testů.
Zařazení předmětu ve studijních plánech