Detail výsledku

Improving Multi-view Object Recognition by Detecting Changes in Point Clouds

VEĽAS, M.; ŠPANĚL, M. Improving Multi-view Object Recognition by Detecting Changes in Point Clouds. In IEEE Symposium on Computational Intelligence for Multimedia, Signal and Vision Processing. Atény: IEEE Computer Society, 2016. p. 1-7. ISBN: 978-1-5090-4239-5.
Typ
článek ve sborníku konference
Jazyk
anglicky
Autoři
Veľas Martin, Ing., Ph.D., UPGM (FIT)
Španěl Michal, doc. Ing., Ph.D., UPGM (FIT)
a další
Abstrakt

This paper proposes the use of change detection in a multi-view object recognition system in order to improve its flexibility and effectiveness in dynamic environments. Multi-view recognition approaches are essential to overcome problems related to clutter, occlusion or camera noise, but the existing systems usually assume a static environment. The presence of dynamic objects raises another issue - the inconsistencies introduced to the internal scene model. We show that by incorporating the change detection and correction of the inherent scene inconsistencies, we can reduce false positive detections by 70% in average for moving objects when tested on the publicly available TUW dataset. To reduce time required for verifying a large set of accumulated object pose hypotheses, we further integrate a clustering approach into the original multi-view object recognition system and show that this reduces computation time by approximately 16%.

Klíčová slova

object recognition, change detection, reconstruction, hypotheses clustering, multi-view, point cloud, RGB-D data

URL
Rok
2016
Strany
1–7
Sborník
IEEE Symposium on Computational Intelligence for Multimedia, Signal and Vision Processing
Konference
IEEE Symposium Series on Computational Intelligence 2016
ISBN
978-1-5090-4239-5
Vydavatel
IEEE Computer Society
Místo
Atény
DOI
UT WoS
000400488301086
EID Scopus
BibTeX
@inproceedings{BUT130944,
  author="Martin {Veľas} and Michal {Španěl}",
  title="Improving Multi-view Object Recognition by Detecting Changes in Point Clouds",
  booktitle="IEEE Symposium on Computational Intelligence for Multimedia, Signal and Vision Processing",
  year="2016",
  pages="1--7",
  publisher="IEEE Computer Society",
  address="Atény",
  doi="10.1109/SSCI.2016.7850045",
  isbn="978-1-5090-4239-5",
  url="http://ieeexplore.ieee.org/document/7850045/"
}
Soubory
Projekty
Centrum kompetence ve zpracování vizuálních informací (V3C - Visual Computing Competence Center), TAČR, Centra kompetence, TE01020415, zahájení: 2012-05-01, ukončení: 2019-12-31, ukončen
Zpracování, rozpoznávání a zobrazování multimediálních a 3D dat, VUT, Vnitřní projekty VUT, FIT-S-14-2506, zahájení: 2014-01-01, ukončení: 2016-12-31, ukončen
Výzkumné skupiny
Pracoviště
Nahoru