Detail výsledku

CNN for Very Fast Ground Segmentation in Velodyne LiDAR Data

VEĽAS, M.; ŠPANĚL, M.; HRADIŠ, M.; HEROUT, A. CNN for Very Fast Ground Segmentation in Velodyne LiDAR Data. In IEEE International Conference on Autonomous Robot Systems and Competitions. Torres Vedras: Institute of Electrical and Electronics Engineers, 2018. p. 97-103. ISBN: 978-1-5386-5221-3.
Typ
článek ve sborníku konference
Jazyk
anglicky
Autoři
Veľas Martin, Ing., Ph.D., UPGM (FIT)
Španěl Michal, doc. Ing., Ph.D., UPGM (FIT)
Hradiš Michal, Ing., Ph.D., UPGM (FIT)
Herout Adam, prof. Ing., Ph.D., UPGM (FIT)
Abstrakt

This paper presents a novel method for ground segmentation in Velodyne point clouds. We propose an encoding of sparse 3D data from the Velodyne sensor suitable for training a convolutional neural network (CNN). This general purpose approach is used for segmentation of the sparse point cloud into ground and non-ground points. The LiDAR data are represented as a multi-channel 2D signal where the horizontal axis corresponds to the rotation angle and the vertical axis represents channels - laser beams. Multiple topologies of relatively shallow CNNs (i.e. 3-5 convolutional layers) are trained and evaluated, using a manually annotated dataset we prepared. The results show significant improvement of performance over the state-of-the-art method by Zhang et al. in terms of speed and also minor improvements in terms of accuracy.

Klíčová slova

convolutional neural networks, ground segmentation, Velodyne, LiDAR

URL
Rok
2018
Strany
97–103
Sborník
IEEE International Conference on Autonomous Robot Systems and Competitions
Konference
2018 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARS)
ISBN
978-1-5386-5221-3
Vydavatel
Institute of Electrical and Electronics Engineers
Místo
Torres Vedras
DOI
UT WoS
000435384800018
EID Scopus
BibTeX
@inproceedings{BUT157178,
  author="Martin {Veľas} and Michal {Španěl} and Michal {Hradiš} and Adam {Herout}",
  title="CNN for Very Fast Ground Segmentation in Velodyne LiDAR Data",
  booktitle="IEEE International Conference on Autonomous Robot Systems and Competitions",
  year="2018",
  pages="97--103",
  publisher="Institute of Electrical and Electronics Engineers",
  address="Torres Vedras",
  doi="10.1109/ICARSC.2018.8374167",
  isbn="978-1-5386-5221-3",
  url="https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8374167"
}
Soubory
Projekty
Centrum kompetence ve zpracování vizuálních informací (V3C - Visual Computing Competence Center), TAČR, Centra kompetence, TE01020415, zahájení: 2012-05-01, ukončení: 2019-12-31, ukončen
IT4Innovations excellence in science, MŠMT, Národní program udržitelnosti II, LQ1602, zahájení: 2016-01-01, ukončení: 2020-12-31, ukončen
Přenos znalostí v oblasti 3D rekonstrukce a 3D mapování, EU, OP PIK - Partnerství znalostního transferu, zahájení: 2017-01-01, ukončení: 2018-09-30, ukončen
Zpracování, zobrazování a analýza multimediálních a 3D dat, VUT, Vnitřní projekty VUT, FIT-S-17-3984, zahájení: 2017-03-01, ukončení: 2020-02-29, ukončen
Výzkumné skupiny
Pracoviště
Nahoru