Detail výsledku
A Reduction of Finitely Expandable Deep Pushdown Automata
Meduna Alexandr, prof. RNDr., CSc., UIFS (FIT)
For a positive integer n, n-expandable deep pushdown automata always contain no more than n occurrences of non-input symbols in their pushdowns during any computation. As its main result, the paper demonstrates that these automata are as powerful as the same automata with only two non-input pushdown symbols---$ and #, where # always appears solely as the pushdown bottom. Moreover, the paper demonstrates an infinite hierarchy of language families that follows from this main result. The paper also points out that if # is the only non-input symbol in these automata, then they characterize the family of regular languages.
Deep Pushdown Automata, Finite Expandability, Reduction, Non-Input Pushdown Symbols
@article{BUT157232,
author="Lucie {Charvát} and Alexandr {Meduna}",
title="A Reduction of Finitely Expandable Deep Pushdown Automata",
journal="Schedae Informaticae",
year="2018",
volume="2017",
number="26",
pages="61--68",
doi="10.4467/20838476SI.17.005.8151",
issn="0860-0295",
url="http://www.ejournals.eu/Schedae-Informaticae/2017/Volume-26/art/10836/"
}
IT4Innovations excellence in science, MŠMT, Národní program udržitelnosti II, LQ1602, zahájení: 2016-01-01, ukončení: 2020-12-31, ukončen
Výzkum pokročilých metod ICT a jejich aplikace, VUT, Vnitřní projekty VUT, FIT-S-14-2299, zahájení: 2014-01-01, ukončení: 2016-12-31, ukončen